

DICCIONARIO ILUSTRADO DE LA BIOLOGIA

Con equivalencias en inglés y un amplio índice español-inglés inglés-español

Título original: Longman Illustrated Dictionary of Biology

Traducción: José Tola
Pilar P. de Valdelomar
Ilustraciones: Charlotte Kennedy
Jane Cheswright
Philip Corke
Brian Ainsworth

SEGUNDA EDICIÓN

© Librairie du Liban, y
EDITORIAL EVEREST, S. A.

Índice

Cómo usar el diccionario

La célula

Generalidades; técnicas; citoplasma, orgánulos; núcleo; membranas; paredes celulares; bioquímica; carbohidratos; lípidos; proteínas; ácidos nucleicos; vitaminas; ensayos bioquímicos, metabolismo; enzimas; respiración; ATP, ADP; fermentación; división del núcleo; mitosis; meiosis.

Principios de clasificación

La variedad de la vida

Moneros; protistos; hongos; plantas; algas; briofitos; pteridofitos; espermatofitos; angiospermas; celentorios; plantelmintos; nematodos; anélidos; artrópodos; moluscos; equinodermos; cordados; peces; anfibios; reptiles; aves; mamíferos

Órganos y tejidos

Raíces; hojas; tallos; tejidos; xilema y floema; vasos; teiidos vegetales; epitelios animales; tejido conjuntivo; hueso; cartílago; sangre; células sanguíneas

Nutrición

Generalidades; fotosíntesis; ciclo de Calvin; animales; canal alimentario; dientes; enzimas digestivos; tipos de alimentación; parasitismo.

Intercambio de gases

Respiración; branquias; sistema traqueal; pulmones; volúmenes de aire

Transporte

Ósmosis; difusión; estomas; vías vegetales; translocación; sistemas circulatorios; corazón; válvulas cardíacas; pigmento respiratorio; vasos sanguíneos; linfa; grupos sanguíneos.

Hemostasia

Sistema endocrino; piel; pelo; hibernación; osmorregulación; excreción; riñón.

Movimiento y respuesta

Sustancias de desarrollo vegetales; tropismos; movimientos de las plantas; fotoperiodismo; tipos de músculos; filamentos musculares; esqueleto; articulaciones; músculos, vuelo; plumas; sistema nervioso; impulso nervioso; arco reflejo; sistema nervioso; cerebro; oído; ojo; visión; comportamiento

Crecimiento y desarrollo

Metamorfosis; embriología; organogenia; germinación; crecimiento; crecimiento secundario.

Cómo usar el diccionario

Reproducción

Generalidades; propagación vegetativa; reproducción sexual; plantas; esporas; esporangios; flores; ovarios de las plantas; partes florales; inflorescencias; polinización; fruto; dispersión de los frutos; gónadas de los mamíferos; espermatozoos; oogénesis; ovulación; copulación; placenta; ciclo del estro; hormonas sexuales.

Genética

Generalidades; ley de la segregación; ley de la distribución independiente; cromosomas sexuales; sobrecruzamiento; alelos; código genético; material genético; mutación; poliploidía.

Evolución

Darwinismo; pruebas de la especiación; mecanismo de la evolución.

Ecología

Ecosistemas; organismos y medio ambiente; sucesión; suelo; ciclos; redes alimentarias; plancton; asociaciones; el hombre y el medio ambiente; polución; enfermedad e inmunidad.

Conceptos generales de biología

Apéndices:

Uno: Vitaminas
Dos: Nutrientes 241
Tres: Sistema internacional de unidades (SI) 245
Índice general

Este diccionario contiene más de 1800 términos utilizados en las ciencias biológicas. Están ordenados en grupos bajo los títulos generales que se sen̄alan en las páginas 3-4. Las entradas están agrupadas según el significado de las palabras, con el fin de ayudar al lector a conseguir un conocimiento amplio del tema

En la parte superior de cada página se indica el tema en negrita y la parte del mismo en cursiva. Por ejemplo, en las páginas 18 y 19:

18 - LA CÉLULA/CARBOHIDRATOS

LA CÉLULA/CARBOHIDRATOS - 19
En las definiciones, las palabras usadas han sido limitadas en lo posible a las 1500 de uso más común. Las que se indican en el «vocabulario de definición» del New Method English Dictionary (quinta edición), de M. West y J. Endicott (Longman, 1976). Se usan también palabras íntimamente relacionadas con estas últimas; por ejemplo: characteristics, definido bajo character en el Dictionary de West.

1. Para hallar el significado de una palabra

Busque la palabra en el índice alfabético del final del libro, y vaya a la página que se indique.

En el índice se encontrarán palabras con una letra o un número al final. Esto sólo sucede si la misma palabra aparece dos veces en el diccionario: ${ }^{\text {a }}$ indica que está definida con relación a los animales y ${ }^{\text {p }}$ que lo están con relación a las plantas. Por ejemplo, cono:
cono ${ }^{\text {a }}$ es una parte de la retina del ojo;
cono ${ }^{p}$ es una estructura reproductora de ciertas plantas.
Los números indican también una palabra que ha sido definida dos veces en contextos diferentes. Por ejemplo, translocación:
translocación ${ }^{1}$ es el transporte de los materiales en las plantas;
translocación ${ }^{2}$ es un tipo de mutación cromosómica.
La descripción de la palabra puede contener otras que lleven detrás suyo flechas entre paréntesis. Esto indica que los términos con flechas están definidos cerca:
(\uparrow) significa que la palabra relacionada aparece más arriba en el texto o en la página de enfrente;
(\downarrow) significa que la palabra relacionada aparece más adelante en el texto o en la página de enfrente.
Una palabra con un número entre paréntesis está definida en otra parte del diccionario, en la página indicada. Buscando esos términos se puede comprender mejor el significado de la palabra que se está definiendo.

La explicación de cada palabra suele depender del conocimiento del significado de uno o más términos anteriores. Por ejemplo, en la página 178, el significado de célula madre de las esporas, microesporangio y todas las si guientes, depende del significado de la palabra espora, que aparece antes que ellas. Una vez entendida la primera palabra, las que vienen después resultan más sencillas. Las ilustraciones han sido creadas para ayudar al lector a comprender las definiciones, aunque éstas no dependen de las ilustraciones.

2. Para encontrar palabras relacionadas

Busque en el índice la palabra de partida y pase a la página que se le indica. Debido a que este diccionario está ordenado por ideas, las palabras relacionadas se encontrarán dentro de un conjunto en la misma página o en una próxima. Las ilustraciones le ayudarán a ver cómo las palabras están relacionadas entre sí

Por ejemplo, las palabras relacionadas con los principios de clasificación están en las páginas 40-41. En la página 40, la entrada clasificación va seguida de las que se usan para describir taxonomía y el sistema binario de nomenclatura, y las ilustraciones muestran los distintos taxones implicados en la clasificación de una especie y el sistema binominal; la página 41 continúa explicando e ilustrando la clasificación, explicando las clasificaciones natura les y artificiales e ilustrando las relaciones entre los principales grupos de organismos

3. Ayuda en el estudio y el repaso de un tema

Este diccionario puede usarse para estudfiar o repasar un tema. Por ejemplo, para repasar sus conocimientos sobre el intercambio de gases, deberá buscar intercambio de gases en el índice alfabético. Pasando a la página indicada, la 112, encontrará respiración, cociente respiratorio, intercambio de gases, etc.; en la página 113 encontrará branquia, filamento branquial, etc. A pasar a la página 114, podrá ver sistema de intercambio a contracorriente, etcétera.

4. Para encontrar una palabra que se adapte a un significado

En la mayoría de los diccionarios es casi imposible encontrar la palabra que se adapte a un determinado significado, pero en este libro es muy sencillo. Por ejemplo, si ha olvidado la palabra para el verticilo exterior del perianto de una flor, todo lo que tiene que hacer es buscar perianto en el índice alfabético e ir a la página que se indique, la 179. Allí encontrará cáliz con un diagrama que ilustra el significado.

5. Abreviaturas usadas en las definiciones

abr.	abreviado por	p.	página
adj.	adjetivo	pl.	plural
p. ej.	por ejemplo	pp.	páginas
etc.	etcétera	sing.	singular
n	nombre (sustantivo)	v	verbo
$=$	igual		

teoría celular, cell theory, idea desarrollada en 1839 por Theodore Schwann, en la que afirmaba que todos los organismos vivos están formados por células individuales, y que es en estas células, y mediante su división, cómo tienen lugar procesos tales como el crecimiento y la reproducción (p. 173)
célula, cell (n), unidad básica de cualquier planta o animal. Es una masa individual, por lo general microscópica (\downarrow), de materia viva o protoplasma (p. 10). Una célula animal está formada por un núcleo (p. 13) que contiene los cromosomas (p. 13) y el citoplasma ($p .10$), que suele ser un gel o líquido viscoso rodeado de una piel muy fina, la membrana plasmática (p. 13). La célula vegetal es similar a la animal, salvo que está rodeada por una pared (\downarrow) de celulosa (p 19) y tiene una vacuola (p . 11) Ilena de líquido.
pared celular, cell wall. capa inanimada exterior de una célula vegetal. Es relativamente rígida, aunque un poco elástica, y proporciona soporte a la célula. Puede haber una pared celular primaria (p . 14) compuesta de celulosa (p. 19) y pectato cálcico y, en las plantas más viejas, una pared celular secundaria (p. 14) formada por capas de celulosa que contienen otras sustancias, tales como lignina (p. 19).
orgánulo, organelle (n), cualquier parte de una célula, tal como el núcleo ($p .13$) o un flagelo ($p .12$), que tiene una función especializada particular.
procariota, prokaryote (n), célula en la que los cromosomas (p. 13) están libres en el citoplasma (p. 10), en lugar de estar englobados por una membrana (p. 14); no existe núcleo Las bacterias (p. 42) y las algas verdiazules ($p .43$) son procariotas.
célula procarionte
bacteria

eucariota, eukaryote (n), célula en la que el núcleo (p. 13) está separado del citoplasma (p. 10) por una membrana nuclear (p. 13). Todos los organismos, excepto las bacterias (p. 42) y las algas verdiazules (p. 43), están compuestos de células eucarioticas.
unicelular, unicellular (adj.). dicese de un organismo formado por una única célula.
pluricelular, multicellular (adj.), dicese de un organismo formado por varias células
citología, cytology (n). ciencia o estudio de las células y de sus actividades.
microscopia, microscopy (n), estudio, usando un microscopio (\downarrow), de los organismos demasiado pequen̄os para ser visibles a simple vista
microscopio, microscope (n), instrumento usado para dar una imagen ampliada de un objeto que es demasiado pequeño para poder ser visto a simple vista.
microscopio óptico, optical microscope, microscopio (\uparrow) en el que la luz pasa a través del objeto que hay que ampliar y llega hasta el ojo por un sistema de lentes y un ocular. Este instrumento puede ampliar un objeto hasta un máximo de unas 1500 veces. Para mayores ampliaciones, debe usarse un microscopio electrónico (\downarrow)
microscopio electrónico, electron microscope, mi croscopio (\uparrow) que puede usarse para ampliar obje tos a mas de 1500 aumentos, llegando hasta 500 000, usando para ello electrones, que tienen una longitud de onda menor que la luz, con el fin de examinar un objeto.
ultraestructura, ultrastructure (n), estructura de un objeto que sólo puede diferenciarse usando un microscopio electrónico (\uparrow)
seccionamiento, sectioning (n), corte de una rodaja extremadamente delgada de tejido (p. 83) que puede examinarse entonces usando un microscopio (\uparrow). Antes de cortarlo, se congela el tejido o se sumerge en un material, como cera de parafina.
micrótomo, microtome (n), instrumento usado para hacer cortes muy delgados de un material.
tinción, staining (n) , método de examinar estructuras particulares dentro de las células, haciendo que algunas partes resulten opacas a la luz o a los electrones, usando para ello productos quimicos. Ciertos tipos de materiales de tinción teñirán diferentes estructuras, como, p. ej., el yodo tiñe el almidón (p. 18)
centrifugación, centrifugation (n), método de separar sustancias de densidades diferentes acelerándolas. por lo general en un recipiente giratorio (centrifugadora), durante períodos prolongados. Las células pueden desmenuzarse o suspenderse en un líquido antes de la centrifugación, de modo que después las partículas sólidas, el sedimento, caerán al fondo del recipiente, mientras que el líquido sobrenadante quedará por encima de ellas.
diálisis, dialysis (n), método de separación de pequeñas moléculas de otras más grandes en una solución (p. 118) mixta, separando la solución del agua mediante una membrana (p. 14), a través de la cual se difunden (p. 119) las moléculas pequeñas y dejan detrás a las más grandes, incapaces de atravesar la membrana.
cromatografia, chromatography (n), método para separar sustancias mezcladas, tales como aminoácidos (p. 21), preparando una solución (p. 118) de esas sustancias y dejando que sean absorbidas (p. 81) y pasen a través de un medio, tal como papel. Las diferentes sustancias se desplazarán a velocidades distintas, y de esta manera se las puede separar.
cromatograma, chromatogram (n), columna o tira de un soporte sólido sobre el cual se han separado sustancias por cromatografía (\uparrow).
electroforesis, electrophoresis (n), método de separar mezclas de sustancias suspendiéndolas en agua y sometiéndolas a una carga eléctrica. Las diferentes sustancias de la mezcla se moverán en diversas direcciones y a velocidades distintas como respuesta a la carga.
protoplasma, protoplasm (n), contenido o material existente dentro de una célula.
citoplasma, cytoplasm (n), totalidad del protoplasma (\uparrow) o material que hay dentro de una célula, distinto al núcleo (p. 13), que se considera viviente. Suele ser un gel o líquido viscoso que contiene otros orgánulos (p.8), tales como el aparato de Golgi (\downarrow). citoplasmático (adj.).
ribosoma, ribosome (n), partícula de proteína (p.21) y ARN (p.24) contenida en el citoplasma (\uparrow). Bajo el control del ADN (p.24) del núcleo (p. 13), se produce la proteína sobre los ribosomas enlazando aminoácidos (p. 21). Los ribosomas suelen presentarse agrupados o formando cadenas.
diálisis

retículo endoplasmático

mitocondria

membrana exterior lisa

reticulo endoplasmático, endoplasmic reticulum, ma lla de cavidades paralelas e interconectadas dentro de la matriz (p.88) de una célula. Están unidas mediante membranas (p.14), que son continuas con la membrana nuclear ($p .13$). RE (abr.).
RE, retículo endoplasmático (\uparrow).
RE rugoso, rough ER, RE (\uparrow) cubierto de ribosomas por el lado citoplasmático (\uparrow).
RE liso, smooth ER, RE (\uparrow) sin ribosomas (\uparrow)
aparato de Golgi, Golgi body, grupo o grupos de cavidades aplanadas dentro del citoplasma (\uparrow) de una célula, rodeado de membranas (p. 14) y conectado con el RE (\uparrow). Es similar al RE liso (\uparrow), pero puede ser utilizado para enlazar carbohidratos (p. 17) a proteínas (p.21) y está también asociado a la se creción (p. 106).
mitocondrias, mitochondria (n. pl.), cuerpos baciliformes en el citoplasma (\uparrow) de una célula. Están formadas por dos membranas (p. 14), de las cuales la interior está replegada hacia dentro en crestas La respiración de la célula (p. 30) y la producción de energía tiene lugar en estos cuerpos y hay más abundancia de ellos en aquellas células que consumen mayor energía.
lisosomas, lysosomes (n. pl.), cuerpos esféricos que se dan en el citoplasma (\uparrow) de las células, están constituidos por una membrana (p . 14) y contienen enzimas (p .28) que pueden ser liberados para des cruir orgánulos (p.8) no deseados o incluso sus células.
microtúbulo, microtubule (n), estructura fibrosa (p .143) hecha de proteínas (p .21) que se encuentra en el citoplasma (\uparrow). Puede presentarse aislado o formando grupos o haces. Su función puede ser el transporte celular; p. ej.: las fibras del huso (p. 37) en la división nuclear (p.35)
microfilamento, microfilament (n), estructura filiforme muy delgada hecha de proteina (p.21), que aparece en el citoplasma (\uparrow) de la mayoría de las células.
fibrilla, fibril (n), fibra ($p .143$) pequeña o estructura filiforme.
vacuola, vacuole (n), gotita de líquido rodeada de una membrana (p.14) o tonoplasto (\downarrow), contenida dentro de las células de las plantas y de los animales, salvo las bacterias (p. 42) y las algas verdiazules (p. 43).
tonoplasto, tonoplast (n), membrana plasmática (p. 13) interna de una célula vegetal, que separa la vacuola (\uparrow) del citoplasma (\uparrow).
protoplasto, protoplast (n), material protoplasmático (\uparrow) entre el tonoplasto (\uparrow) y la membrana plasmática (p. 13).
jugo celular, cell sap, líquido contenido en una vacuola (p .11) vegetal.
plastidio, plastid (n), cuerpo en el citoplasma (p. 10) de las células vegetales, salvo las bacterias (p. 42), las algas verdiazules (p. 43) y los hongos (p. 46), rodeado por una membrana (p.14) y que contiene ADN (p.24), pigmentos (p. 126) y reservas nutritivas. cloroplasto, chloroplast (n), plastidio (\uparrow), sólo en plantas, que contiene clorofila (\downarrow) y es la sede de la fotosíntesis (p.93). Siempre está rodeado de una membrana unitaria (p.14) doble.

cloroplasto

clorofila, chlorophyll (n), pigmento (p. 126) verde que se encuentra en los cloroplastos (\uparrow) de las plantas y que es importante para la fotosíntesis (p. 93). Existen dos formas de clorofila: la A y la B
leucoplasto, leucoplast (n), plastidio (\uparrow) incoloro; p. ej.: los granos de almidón.
estroma, stroma (n), matriz ($p .88$) dentro de un cloroplasto (\uparrow) que contiene granos de almidón (p.18) y enzimas (p. 28).
grana, grana (n. pl.), vesículas (\downarrow) aplanadas y con forma de disco que hay en el estroma (\uparrow) de un cloroplasto (\uparrow) y que contienen la clorofila (\uparrow).
vesícula, vesicle (n), estructura o cavidad en forma de gota, de paredes delgadas y que contiene líquido. laminilla, lamella (n), estructura parecida a una lámina delgada.
cilio, cilium (n), filamento delgado que se proyecta desde la superficie de una célula, en los animales y en unas pocas plantas, y que pone en movimiento el líquido que le rodea mediante una acción de batido o remado.
flagelo, flagellum (n), filamento largo y delgado que se proyecta desde la superficie de una célula y que se mueve con una acción ondulante. En las bacterias, el flagelo provoca la locomoción (p. 143) mediante un efecto de látigo. Los flagelos son más largos que los cilios.

fibra de la raíz

cuerpo basal, basal body, cuerpo delgado en forma de bastoncillo, situado en la base de un cilio (\uparrow) o de un flagelo (\uparrow), compuesto por nueve fibrillas (p.11) dispuestas en anillo en el borde del cilio. Hay también dos fibrillas centrales que no forman parte del cuerpo basal
microvellosidades, microvilli (n. pl.), proyecciones en forma de dedo desde la superficie de la membrana plasmática (\downarrow) de una célula, que mejora el poder de absorción (p.81) de la célula aumentando su área superficial. Véase también vellosidades (p. 103)
núcleo, nucleus (n), cuerpo presente dentro de las células de los organismos eucarióticos (p.9) que contiene los cromosomas (\downarrow) del organismo. nuclear (adj.).
membrana nuclear, nuclear membrane, membrana unitaria ($p .14$) doble y firme que rodea al núcleo (\uparrow) y lo separa del citoplasma (p. 10), aunque permite el intercambio de materiales entre el núcleo y el citoplasma a través de sus poros (p. 120).
nucléolo, nucleolus (n), cuerpo denso, redondeado y pequeño, que en número de dos puede estar presente dentro del núcleo (\uparrow). Es rico en ARN (p. 24) y proteínas (p .21), pero no está rodeado de una membrana (p. 14)
cromosoma, chromosome (n), cuerpo en forma de bastoncillo o filamento presente en el interior del núcleo (\uparrow) y que se tiñe fácilmente por la acción de varios colorantes, de ahí su nombre. Un cromosoma está compuesto de ADN (p.24) o ARN (p. 24) y proteína ($p .21$). Cada cromosoma tiene la forma de una larga hélice (p.25) de ADN. La mayoria de los cromosomas se presentan en parejas llamadas cromoso mas homólogos (p. 39). Están formados por miles de genes (p. 196) que dan lugar y controlan funciones y características particulares del organismo, tales como el color de los ojos, y que pasan a los descendientes por herencia (p. 196). Cada organismo tiene en sus células un número constante de cromosomas; p. ej.: en el ser humano 23 pares.
cromatina, chromatin (n), compuesto granular de ácido nucleico ($p .22$) y proteína ($p .21$) del cromosoma (\uparrow), que se tiñe intensamente bajo la acción de varios colorantes.
membrana plasmática, plasma membrane, membrana (p.14) extremadamente delgada que separa la célula de su entorno. Permite la transferencia de sustancias entre la célula y el medio en el que ésta se encuentra.
plasmalema, plasmalemma (n), membrana plasmática unidad de membrana (p. 13) o membrana celular (\downarrow)
membrana unitaria, unit membrana, estructura común, dividida en tres capas, de la membrana plasmática (p. 13) o de otras membranas, tales como el retículo endoplasmático (p.11). Comprende una película (\downarrow) monomolecular y una capa bimolecular (\downarrow) La membrana unitaria se conoce también como unidad de membrana
unidad de membrana $=$ membrana unitaria (\uparrow).
película monomolecular, monomolecular film, capa de una molécula de grosor de proteína (p .21) presente a ambos lados de la capa bimolecular (\downarrow) y que forma parte de la organización de la membrana unitaria (\uparrow). Tañida y bajo el microscopio electrónico (p.9) aparece como un estrato (\downarrow) oscuro.
capa bimolecular, bimolecular leaflet, capa de dos moléculas de grosor de lípido (p .20) que se encuentra entre dos películas monomoleculares (\uparrow) y forma parte de la organización de la membrana unitaria (\uparrow). Teñida, y bajo el microscopio electrónico (p.9), aparece como un estrato (\downarrow) claro
estrato, stratum, capa.
fagocitosis, phagocytosis (n), proceso en el que una célula engloba una partícula que hay en sus proximi dades y la incluye dentro de su citoplasma (p. 10) para formar una vacuola. célula se repliega dentro de sí misma. engloba una diminuta gota de líquido de sus alrededores y la in corpora a su citoplasma (p .10) para formar una ve sícula (p. 12)
lámina media, middle lamella, material que en las plantas se dispone entre paredes celulares (p. 8 adyacentes y fija las células unas con otras. Aparece cuando se forman nuevas células
pared celular primaria, primary cell wall, primera pa red celular (p .8) de una célula joven que aparece cuando esta se forma. Vease tambien pared celular secundaria (\downarrow).
pared celular secundaria, secondary cell wall, pared celular (p.8) que se deposita por dentro de la pared celular primaria (\uparrow). Rodea a algunas células en las plantas más viejas
punteadura, pit (n), pequeña zona de la pared celular secundaria (\uparrow) que apenas ha engrosado o no ha estado presente durante la formación de la pared secundaria. Las punteaduras de una célula se corres ponden en posición con las de células vecinas.
 dos moléculas de lípid película monomolecula de proteina

punteadura simple

lámina media
pared primaria
pared secundaria
pared secundaria -
cavidad de la punteadur membrana de abertura abertura
punteadura bordeada

plasmodesmos

plasmodesmos que comprenden citoplasma y tubo de reticulo endoplasmático

enlace de hidrógeno entre moléculas de agua

enlace de hidrógeno (atracción entre átomo de hidrógeno positivo y átomo de oxígeno negativo)
plasmodesmos, plasmodesmata (n. pl.), filamentos de citoplasma (p .10) que conectan éste con las células que tıene junto a el y que pueden agruparse a través de las membranas (\uparrow) de las punteaduras (\uparrow). Los plasmodesmos pasan a través de estrechos poros (p. 120) a la pared celular (p. 8) de celulosa (p. 8).
bioquímica, biochemistry (n), estudio o ciencia de las sustancias químicas y sus reacciones en los anima les y las plantas
compuesto orgánico, organic compound, sustancia compuesta de carbono, excepto los óxidos y los carbonatos de carbono, de la cual están hechos todos los seres vivientes. El oxígeno y el carbono son los principales componentes de todos los compuestos orgánicos.
compuesto inorgánico, inorganic compound, compuesto que, excepto los óxidos y carbonatos de carono, no contiene carbono y que no es un compues to orgánico (\uparrow). La sal es un ejemplo de compuesto inorgánico.
enlace hidrógeno, hydrogen bond, enlace que une una molécula de agua a otra molécula, haciendo aquélla más estable de lo normal. Una molécula de agua consta de dos átomos de hidrógeno unidos a un átomo de oxígeno compartiendo electrones. La molécula resultante es débilmente polar con átomos de hidrógeno cargados positivamente y el oxígeno argado negativamente. Las moléculas polares se atraen débilmente entre sí.
ácido, acid (n), sustancia que libera iones hidrógeno $\left(\mathrm{H}^{+}\right)$en una solución (p.118) acuosa o acepta elec trones en las reacciones quimicas. Un acido puede ser un compuesto inorgánico (\uparrow), tal como el ácido clorhídrico, HCl, u orgánico (\uparrow), tal como el ácido etanoico, $\mathrm{CH}_{3} \mathrm{COOH}$. La acidez de una solución puede medirse en la escala del pH (-log de la con centración de H^{+}). ácido (adj.)
base ', base (n), sustancia que libera iones hidróxilo $\left(\mathrm{OH}^{-}\right)$en una solución (p.118) acuosa o cede electrones en las reacciones químicas; p. ej.: el hidróxido sódico, NaOH . básico (adj.).
pH, pH, véase ácido (\uparrow)
tampón, buffer (n), sustancia que ayuda a una solución (p .118) a resistir un cambio en el $\mathrm{pH}(\uparrow)$ cuando se le añade un ácido (\uparrow) o una base (\uparrow). Gran cantidad de los líquidos biológicos existentes funcionan como tampones
condensación ejemplo de una reacción de condensación

sacarosa $\mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{H}_{2} \mathrm{O}$

condensación, condensation (n), reacción en la que dos compuestos orgánicos (p.15) simples, tales como glucosa (\downarrow) y fructosa (\downarrow), se combinan para formar otro compuesto, tal como sucrosa (p. 18) y una molécula de agua.
hidrólisis, hydrolysis (n), reacción en la que el agua se combina con un compuesto orgánico (p. 15), tal como la sucrosa (p. 18), para formar dos nuevos compuestos orgánicos, tales como glucosa (\downarrow) y fructosa (\downarrow). Lo inverso es la condensación (\uparrow)

gliceraldehído

una triosa, azucar aldosa
(3 átomos de carbono) (3 átomos de carbono)

| CHO |
| :---: | :---: |
| |
| HCOH |
| I grupo |
| $\mathrm{CH}_{2} \mathrm{OH}$ |

biología molecular, molecular biology, estudio o ciencia de la estructura y las actividades de las moléculas que constituyen las plantas y los animales.
carbohidrato, carbohydrate (n), compuesto orgánico (p. 15) que contiene los elementos carbono, hidrógeno y oxígeno, de fórmula general $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}$. Los carbohidratos son esenciales en el metabolismo (p.26) de todos los seres vivientes.
monosacárido, monosaccharide (n), carbohidrato (\uparrow) compuesto de moléculas pequeñas. Los monosacáridos son los elementos de construcción con los que se forman los disacáridos (p.18) y los polisacáridos (p.18). Los monosacáridos comunes que se encuentran en las células contienen de tres a siete átomos de carbono. Un monosacárido es el azúcar más sencillo, que si se disgrega en unidades menores deja de ser azúcar
azúcar, sugar (n), el carbohidrato (\uparrow) más simple, un mono-, di- o polisacárido (p. 18)
azúcar triosa, triose sugar (n), monosacárido (\uparrow) en el que la letra n de la fórmula general del carbohidrato (\uparrow) es 3. El gliceraldehído es un azúcar triosa de fórmugla $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$
azúcar pentosa, pentose sugar (n), monosacárido (\uparrow) en el que la letra n de la fórmula general del carbohidrato (\uparrow) es 5. La ribosa (p. 22) es un azúcar pentosa de fórmula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
azúcar hexosa, hexose sugar (n), monosacárido (\uparrow) en el que la letra n de la fórmula general del carbohidrato (\uparrow) es 6 . La glucosa (\downarrow) es un azúcar hexosa de formula $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. Los atomos de los azúcares hexosa pueden disponerse de maneras diversas para dar diferentes tipos de azúcares; p. ej.: glucosa y fructosa (\downarrow).
glucosa, glucose (n), azúcar hexosa (\uparrow) ampliamente extendida en animales y plantas. La glucosa constituye la principal fuente de energía de los seres vivientes al oxidarse (p.32) durante la respiración (p.112) para dar dióxido de carbono y agua, al tiempo que libera energia. En las plantas es el producto de la fotosíntesis (p. 93) y es almacenada en forma de almidón, mientras que en los animales se produce durante la digestión (p.98) de disacáridos (p. 18) y polisacáridos (p.18) y se almacena en forma de glicógeno (p.19). La glucosa se combina con la fructosa (\downarrow) para formar sucrosa (p. 18) por condensación (\uparrow).
fructosa, fructose (n), azúcar hexosa (\uparrow) ampliamente distribuida en las plantas. Se puede combinar con glucosa (\uparrow) para formar sucrosa (p. 18) por condensación (\uparrow).
galactosa, galactose (n), azúcar hexosa (p. 17), que es un constituyente de la lactosa (\downarrow) y que se en cuentra en numerosos polisacáridos (\downarrow) vegetales así como en combinaciones de polisacáridos y pro teína (p.21) animal.
disacárido, disaccharide (n), carbohidrato (p. 17), que resulta de la combinación de dos monosacáridos (p. 17) por condensación (p. 16); p. e).: maltesa (\downarrow y sucrosa (\downarrow).

maltosa, maltose (n), disacảrido (\uparrow) que se forma de la condensación (p. 16) de dos moléculas de glucosa (p.17). Es un producto que se forma de la des composición del almidón (\downarrow) durante la germinación (p.168) en las plantas y la digestión (p.98) en los animales. Se le suele conocer también como azúcar de malta.
sucrosa, sucrose (n), disacárido (\uparrow), que es un compuesto de una molécula de glucosa (p.17) y una molécula de fructosa (p .17). Está presente en las plantas, pero no en los animales. Se conoce también como azúcar de caña.
lactosa, lactose (n), disacárido (\uparrow) compuesto que contiene una molécula de glucosa (p. 17) y otra de galactosa (\uparrow). Está presente en la leche de los mamíferos (p.80)
polisacárido, polysaccharide (n), carbohidrato ($p .17$) que resulta de la combinación de más de dos mono sacaridos (p .17) por condensación (p. 16). La fórmula general de los polisacáridos es $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\text {n }}$.
almidón, starch (n), polisacárido (\uparrow), que constituye una de las principales reservas de alimento de las plantas verdes. Se encuentra en los leucoplastos (p. 12). Adquiere coloración negroazulada por efecto del yodo.
microfibrillas de celulosa en la superficie de una pared celular vegetal (X24 000)

glicógeno, glycogen (n), polisacárido (\uparrow) almacenado por los animales y los hongos (p. 46). Está formado por numerosas moleculas de glucosa (p. 17). En los vertebrados (p. 74) está presente en grandes cantidades en el hígado (p. 103) y en los músculos (p. 143)
celulosa, cellulose (n), polisacárido (\uparrow) de cadena lar ga formado por unidades de glucosa (p. 17). Se usa como soporte estructural y es el principal componen te de la pared celular (p.8) de las plantas.

lignina, lignin (n), compuesto orgánico ($p, 15$), complejo cuya estructura no es del todo conocida. Con la celulosa (\uparrow), forma otro de los componentes principales de la madera de los árboles. Se deposita en las paredes celulares ($p .8$) del esclerénquima (p. 84), del xilema ($p .84$) y de las traqueidas ($p .84$). Se tiñe de rojo con floroglucinol acidulado. lignificado (adj).
lípido, lipid (n), cualesquiera de los diversos compues os orgánicos (p.15) que se encuentran en las plan tas y los animales con estructuras muy diferentes pero que son insolubles en el agua y solubles en sustancias, tales como etoxietano (éter) y triclorometano (cloroformo). Se forma por la condensación (p. 16) de glicerol (\downarrow) y ácidos grasos (\downarrow). Los lípi dos tienen diversas funciones, entre las que se incluyen las de almacenamiento, protección, aisla miento, impermeabilización e incluso la de ser una fuente de energía
grasa, fat (n), lípido (\uparrow) formado a partir del alcoho glicerol (\downarrow) y uno o más ácidos grasos (\downarrow). Es sólida a temperatura ambiente.
aceite, oil (n), lípido (\uparrow) formado por el alcohol glicerol (\downarrow) y uno o más ácidos grasos (\downarrow). Es líquido a temperatura ambiente.
glicerol, glycerol (n), alcohol de fórmula $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$ que se forma por̀ la hidrólisis (p.16) de una grasa. Es un íquido dulce, pegajoso, inodoro e incoloro. Su nom bre moderno es propano-1,2,3-triol.
ácido graso, fatty acid, ácido orgánico (p.15) de fórmula general $\left[\mathrm{R}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{COOH}\right]$ que puede unirse con glicerol (\uparrow) mediante condensación (p .16) para dar un lípido (\uparrow). En los organismos vivos, los ácidos grasos suelen tener cadenas no ramificadas y un número par de átomos de carbono
triglicérido, triglyceride (n), componente principal de los lípidos (\uparrow) animales y vegetales. Procede del glicerol (\uparrow), que tiene tres grupos hidróxilo reactivos, por condensación (p.16), con tres ácidos grasos (\uparrow).
fosfolípido, phospholipid (n), lípido (\uparrow) que contiene un grupo fosfato como parte esencial de la molecula Procede del glicerol (\uparrow) unido a dos ácidos grasos (\uparrow), un grupo fosfato y una base nitrogenada. Los fosfolípidos son componentes esenciales de las membranas celulares (p. 14).
saturado, saturated (adj.), dícese de una cadena de carbono, como la que hay en un ácido graso (\uparrow), en la que cada átomo de carbono está unido mediante enlaces sencillos a átomos de carbono, de hidrógeno u otros grupos. No es reactivo
no saturado, unsaturated (adj.), dicese de una cade na de carbono, como la que hay en un ácido graso (\uparrow), en la que los átomos de carbono están unidos a otros grupos con al menos un enlace doble o triple. Un ácido graso no saturado es reactivo y puede ser esencial para mantener una estructura vital o una función en un organismo
structuras primaria, secundaria erciaria y cuaternaria de las proteínas
estructura primaria

estructura
uaternaria
estructura
cuaternaria

 co, peptide bond, enlace que une un aminoácido a un grupo carboxílico $(-\mathrm{COOH})$ de tro, dando por resultado la formación de un dipépti do (\uparrow) o polipéptido (\uparrow). Un enlace peptídico sólo puede romperse por la acción de un ácido (p. 15 caliente o un álcali calienteenlace peptidico entre aminoácidos

\mathbf{R}_{1} y $\mathbf{R}_{\mathbf{2}}$ son grupos laterales
proteína conjugada, conjugated protein, proteína (\uparrow) que aparece combinada con un grupo (p.30) pros tético o no proteínico. La hemoglobina (p. 126) es un ejemplo de una proteína conjugada
proteína globular, globular protein, proteína (\uparrow) que debido a la carga positiva y negativa en ella, forma una estructura tridimensional compleja al atraerse las cargas opuestas y formar enlaces débiles. Una hormona (p. 130) es un ejemplo de una proteína globular.
proteína fibrosa, fibrous protein, proteína (p. 21) que se presenta como largas cadenas paralelas entrela zadas. Las proteínas fibrosas son insolubles y se utilizan como soporte y para otros fines estructurales La queratina del pelo, de las pezuñas, de las pluLa queratina del pelo, de las pezunas, de las plu-
mas, etc., es un ejemplo de este tipo de proteína. mas, etc., es un ejemplo de este tipo de proteina.
coloide, colloid (n), sustancia, como, por ejemplo, almidón (p.18), que no se disuelve nisuspende en un líquido, sino que queda dispersa en él.
ácido nucleico, nucleic acid, molécula grande, de cadena larga, formada por cadenas de nucleótidos (\downarrow) y que se encuentra en todos los seres vivos. Es el soporte de la información genética (p. 196).
nucleótido, nucleotid (n), compuesto orgánico (p. 15) formado de ribosa (\downarrow), ácido fosfórico (\downarrow) y una base nitrogenada (\downarrow).
ribosa, ribose (n), monosacárido ($p .17$) o azúcar pentosa (p .17), que forma una parte esencial de un nucleótido (\uparrow)
desoxirribosa, deoxyribose (n), monosacárido ($p .17$) con un oxígeno menos que la ribosa (\uparrow).
ácido fosfórico, phosphoric acid, compuesto inorgánico (p. 15) de fórmula $\mathrm{H}_{3} \mathrm{PO}_{4}$ que forma una parte esencial de los nucleótidos (\uparrow). La molécula de fosfato del ácido fosforico forma un puente entre dos pentosas (p. 17).
base ${ }^{2}$, base (n), sustancia, como la purina (\downarrow) o la pirimidina (\downarrow), que contiene nitrógeno y que va unida a la cadena azúcar-fosfato principal en un ácido nucleico (\uparrow).
citosina, cytosine (n), base (\uparrow) nitrogenada derivada de la pirimidina (\downarrow), que se encuentra en el ácido ribonucleico (p.24) y en el ácido desoxirribonucleico (p. 24).
uracilo, uracil (n), base nitrogenada (\uparrow) derivada de la pirimidina (\downarrow), que se encuentra sólo en el ácido ribonucleico (p. 24)
adenina, adenine (n), base nitrogenada (\uparrow) derivada de la purina (\downarrow), que se encuentra en el ácido ribonucleico (p.24) y en el ácido desoxirribonucleico (p.24).
guanina, guanine (n), base nitrogenada (\uparrow) derivada de la purina (\downarrow), que se encuentra en el ácido ribonucleico (p.24) y el ácido desoxirribonucleico (p.24).
timina, thymine (n), base nitrogenada (\uparrow) derivada de la pirimidina (\downarrow), que se encuentra sólo en el ácido desoxirribonucleico (p.24).
las bases comunes en los nucleótidos de ADN y ARN

	purinas	pirimidinas
sólo ADN		 timina
ADN y ARN	 adenina guanina	citosina
sólo ARN		 uracilo

pirimidina, pyrimidine (n), compuesto orgánico (p. 15) de fórmula básica $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$ y de estructura cíclica, del cual derivan importantes bases nitrogenadas (\uparrow). base pirimídica, pyrimidine base, cualquiera de los varios compuestos relacionados con la pirimidina (\uparrow) y presentes en los ácidos nucleicos (\uparrow).
purina, purine (n), compuesto orgánico (p.15) de fór mula básica $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{5}$ con una doble estructura cíclica. A partir de este compuesto se derivan importantes bases nitrogenadas (\uparrow).
base púrica, purine base, cualesquiera de los diversos compuestos relacionados con la purina (\uparrow) y presente en los ácidos nucleicos (\uparrow).
forma molecular básica de una base nitrogenada purinas
adenina (A) guanina (G)

pirimidinas
timina (T)
citosina (C) uracilo (U)

ARN, RNA, ácido ribonucleico. Ácido nucleico (p. 22), consistente en un gran número de nucleótidos (p. 22) dispuestos para formar una cadena sencilla La base (p .22) de cada nucleótido citosina (p .22) uracilo (p.22), adenina (p. 22) o citosina (p. 22). El azúcar es ribosa (p.22). El ARN se encuentra en el núcleo ($p .13$) de una célula y en el citoplasma (p.10). Suele formar parte de los ribosomas (p. 10), pero se presenta también como ARN de transferencia y como ARN mensajero. Las cadenas de ARN se producen en el núcleo a partir de ADN (\downarrow), pasa después al citoplasma y se une después a los ribosomas. El ribosoma se desplaza a lo largo de la cadena de ARN y produce un polipéptido (p. 21), cuya estructura viene controlada por el ARN. Véase también transcripción y traducción p. 205

ADN, DNA, ácido desoxirribonucleico. Ácido nucleico (p. 22) formado por un gran número de nucleótidos (p. 22) dispuestos en forma de cadena sencilla. Por lo general, se emparejan dos cadenas para formar una doble hélice (\downarrow). La base ($p .22$) de cada nucleótido es citosina (p. 22), adenina (p.22), guanina (p. 22) o timina (p. 22). El azúcar es desoxirribosa (p. 22). EI ADN se encuentra en los cromosomas (p. 13). de los procariotas (p. 8) y de los eucariotas (p.9) y en las mitocondrias de los eucariotas. Es el material hereditario (p. 196) en casi todos los seres vivientes y es capaz de autoduplicarse durante las divisiones nucleares (p.35).
estructura de una porción de molécula de ARN

estructura de parte de una

diagrama de la doble hélice de ADN

cadena de polinucleótidos, polynucleotide chain, ca dena de nucleótidos (p.22) unidos, que constituye un ácido nucleico (p.22)
hipótesis de Watson y Crick, Watson-Crick hypothe sis, hipótesis (p .235) basada en la cristalografía de rayos X, que indica que el ADN (\uparrow) es una doble hélice (\downarrow) de dos cadenas arrolladas de grupos fosfato y azúcar alternos, con los azúcares unidos po pares de bases (p.22)
doble hélice, double helix, disposición de dos cade nas (\uparrow) de polinucleótido helicoidales (\downarrow) en el ADN (\uparrow).
hélice, helix, curva resultante de dibujar una línea rec ta sobre un plano que está enrollado alrededor de un cilindro circular. Las dos hélices del ADN (\uparrow) se en trelazan para formar una doble hélice (\uparrow) y están unidas mediante bases nitrogenadas ($p .22$) helicoidal (adj.)
apareamiento de bases, base pairing, enlaces que mantienen unida la doble hélice (\uparrow) de ADN (\uparrow) formado cada uno de ellos por una purina (p. 22 unida a una pirimidina (p .22) por medio de enlaces hidrógeno (p. 15).
vitamina, vitamin (n), nombre dado a varios compues tos organicos (p. 15) que necesitan los organismos para metabolizar (p. 26) y que ellos mismos no sue len poder sintetizar en cantidades suficientes para sustituir la que se consume durante el metabolismo. Véase p. 238.
prueba de Benedict, Benedict's test, método para de terminar la presencia de monosacáridos (p . 17) y al gunos disacáridos (p.18), añadiendo una solución (p.118) de sulfato de cobre, citrato sódico y carbonato sodico a una solución de azúcar que produce un precipitado (p. 26) rojo cuando se lleva a la ebullicion, debido a que el azucar reduce el sulfato de cobre a óxido de cobre. La sucrosa (p. 18) y otros azúcares no reductores no reducen el sulfato de co bre, pero pueden detectarse hidrolizándolo (p. 16 primero en sus azúcares reductores constituyentes
prueba de Fehling, Fehling's test, prueba similar a la de Benedict (\uparrow), pero en la que el reactivo (p. 26) usado es una solución (p. 118) que contiene sulfato de cobre, tartrato de sodio y potasio e hidróxido sódico.
prueba del yodo, iodine test, método para determina la presencia y distribucion del almidón (p.18) en las celulas cortando una seccion (p. 9) delgada del material e introduciendola en una solución de yoduro potásico. Los granos de almidón se vuelven de color negro azulado
prueba de la emulsión, emulsion test, método para comprobar la presencia de un lípido (p.20) disolviendo la sustancia en alcohol (generalmente etanol) y añadiendo un volumen igual de agua. Un precipitado blanco turbio indica la presencia de un lípido.
prueba de alcohol/agua $=$ prueba de la emulsión (\uparrow).
prueba Sudan III, Sudan III test, método de someter a ensayo un lípido (p.20) que se tiñe de rojo con una solución Sudan III
ensayo de la marca grasa, greasemark test, método de someter a ensayo un lípido (p.20) tomando una gota de la sustancia que hay que ensayar y colocándola sobre un papel de filtro. Cuando se seca, sólo los lípidos dejan una mancha traslúcida visible a contraluz.
traslúcido, translucent (adj.), dícese de un material que deja pasar la luz, pero a través de la cual no se perciben los objetos con claridad.
prueba de Millon, Millon's test, método de someter a ensayo las proteínas (p .21) añadiendo unas pocas ensayo las proteinas (p. 21) anadiendo unas pocas
gotas de millon (\downarrow) a una suspensión de gotas de reactivo de Millon (\downarrow) a una suspension de
proteína y poniéndola a hervir. La proteína adquiere proteína y poniéndola a herv
una coloración rojo ladrillo.
prueba de Biuret, Biuret test, método de someter a ensayo una proteína ($p .21$) añadiendo un volumen igual de una solución al 2 por 100 de hidróxido sódico (Biuret A), seguido de una solución al 0,5 por 100 de sulfato de cobre (Biuret B). La proteína se tiñe de púrpura.
emulsión, emulsion (n), suspensión coloidal (p.22) de un líquido en otro
suspensión, suspension (n), mezcla en la que las partículas de una o más sustancias están distribuidas en un fluido.
fluido, fluid (n), sustancia que fluye; p. ej.: un líquido o un gas.
precipitado, precipitate (n), sólido insoluble formado por la reacción que tiene lugar dentro de una solución ($p .118$).
reactivo, reagent (n), sustancia o solución (p. 118) usada para producir una reacción característica en una prueba química
metabolismo, metabolism (n), término general para las reacciones químicas que tienen lugar dentro de las células de todos los organismos vivos.
metabolito, metabolite (n), cualesquiera de las sustancias inorgánicas (p. 15) u orgánicas (p. 15), tales como agua o dióxido de carbono, aminoácidos (p.21) o vitaminas ($p .25$), que participan en el metabolismo (\uparrow)
vía metabólica, metabolic pathway, serie de pequeñas etapas mediante las que se va desarrollando el metabolismo (\uparrow).
metabolismo reacciones químicas en una célula vegetal

funcionamiento de los enzimas en la catálisis de las reacciones

síntesis

enzima, enzyme (n), proteina (p. 21) que incrementa la velocidad a la que tienen lugar los procesos quimicos del metabolismo (p.26), sin que resulte consumida en la reacción sobre la que actúa. Los enzimas están presentes en todas las células vivas. Resultan facilmente destruidas por las temperaturas elevadas (desnaturalizadas) y requieren ciertas condiciones para actuar. La velocidad de una reacción catalizada (\downarrow) por enzimas depende de la concentración del sustrato (\downarrow), de la temperatura del enzima y del pH (p .15). Los enzimas incrementan la velocidad de reacción haciendo bajar la energía de activación.
intracelular, intracellular (adj.), dentro de una célula Por ejemplo, la mayor parte de la actividad del enzima (\uparrow) es intracelular; es decir, tiene lugar dentro de la célula que produce las enzimas.
extracelular, extracellular (adj.), fuera de una célula. Por ejemplo, los enzimas (\uparrow) digestivos (p. 98), que son de actividad extracelular, pueden ser secretadas ($p .106$) en el intestino ($p .98$) de un animal a partir de otras células en las que son producidos.
in vivo, in vivo, "en vida" (adj.), dícese de todos los procesos que tienen lugar dentro del propio organismo viviente.
in vitro, in vitro, «en cristal» (adj.), dícese de los procesos, tales como el cultivo de tejidos celulares (p. 83), que se llevan a cabo experimentalmente fuera del organismo vivo y derivan originalmente de experimentos realizados en partes de un organismo en un tubo de ensayo.
catalizador, catalyst (n), cualquier sustancia, como, p. ej.: un enzima (\uparrow), que incrementa la velocidad a la que tiene lugar una reacción química, pero que no es consumida en la reacción. catalizar (v)

sustrato, substrate (n), sustancia sobre la cual actúa algo; p. ej.: la mayoría de los enzimas (\uparrow) solamente funcionan sobre un determinado sustrato y se unen a sus moléculas.
centro activo, active site, parte del enzima (\uparrow) a la cual se unen moléculas específicas del sustrato (\uparrow)
complejo enzima-sustrato, enzyme-substrate com plex, combinación de la molécula de enzima (\uparrow) con la molécula de sustrato (\uparrow).
hipótesis de la llave y la cerradura, lock and key hy pothesis, hipótesis (p. 235) que explica las propiedades de los enzimas (\uparrow), suponiendo que la forma particular de una proteina enzimatica (p. 21) se corresponde con la forma de moleculas particulares, lo mismo que una cerradura y su llave, de modo que un enzima sólo actuará como catalizador (\uparrow) para un tipo específico de molécula.
inhibidor, inhibitor (n), sustancia que ralentiza o detiene una reacción que es controlada por un enzima (\uparrow). inhibición (n), inhibir (v).
inhibición competitiva, competitive inhibition, inhibición (\uparrow) cuando el sustrato (\uparrow) y el inhibidor compi ten por el enzima (\uparrow). Se conoce también como inhi bicion reversible (p.30).
inhibición no competitiva, non-competitive inhibition inhibición (\uparrow) cuando el inhibidor se combina permanentemente con el enzima (\uparrow), de modo que el sustrato (\uparrow) es excluido. Se conoce también como inhibición no reversible (p.30).
reversible, reversible (adj.), dicese de una reaccion o proceso que no es permanente; es decir, que puede tener lugar en sentido contrario. invertir (v).
no reversible, non-reversible (adj.), que no es reversible (\uparrow).
cofactor, cofactor (n). compuesto (p. 15) inorgánico adicional que debe estar presente en una reacción antes de que el enzima (p.28) la catalice (p.28)
coenzima, co-enzyme (n), compuesto ($p .15$) orgánico no proteínico ($p .21$) adicional que debe estar presente en una reacción antes de que el enzima (p.28) la catalice (p.28).
grupo prostético, prosthetic group, compuesto (p. 15) orgánico no proteínico (p. 21) que forma parte esencial de un enzima (p.18) y que debe estar presente en una reacción antes de que el enzima la catalice (p. 28).
hidrolasa, hydrolase (n), enzima ($p .28$) que cataliza (p.28) las reacciones de hidrólisis ($p .16$)
carbohidrasa, carbohydrase (n), enzima (p.28) que cataliza (p.28) las reacciones digestivas (p.98) y ayuda a descomponer los carbohidratos (p.17).
oxidasa, oxidase (n), grupo de enzimas (p.28) que cataliza ($p .28$) las reacciones de oxidación ($p .32$).
deshidrogenasa, dehydrogenase (n), grupo de enzimas (p.28) que cataliza (p.28) reacciones en las que se eliminan átomos de hidrógeno de un azúcar.
carboxilasa, carboxylase (n), grupo de enzimas (p.28) que cataliza (p.28) reacciones en las que se añaden grupos carboxilo (COOH) a un sustrato (p. 29).
transferasa, transferase (n), grupo de enzimas (p. 28) que cataliza ($p .28$) reacciones en las que un grupo es transferido de un sustrato (p.29) a otro
isomerasa, isomerase (n), grupo de enzimas (p.28) que cataliza (\uparrow) reacciones en la que los atomos de las moléculas son reordenados
respiración celular, cell respiration, descomposición por oxidación (p.32) de los azúcares produciendo dióxido de carbono, agua y energía.
endergónico, endergonic (adj.), dícese de una reacción que absorbe (p. 81) energía.
exergónico, exergonic (adj.), dicese de una reacción que libera energía
electrón, electron (n), partícula muy pequeña, cargada negativamente en un átomo, que puede ser elevada a niveles energéticos superiores y liberada después durante la respiración celular (n)

sistema de transporte de electrones en la respiración nicotinamida
sistema portador de electrones (hidrógenos), electron (hydrogen) carrier system, sistema que funciona durante la respiración celular (\uparrow) en el que los electrones (inicialmente liberados, como parte de un átomo de hidrógeno que se escinde en un electrón y un protón) son recogidos por un aceptor (\downarrow) de electrones y pasados a atro aceptor de electrones, situado a niveles energéticos menores. La energía liberada en el proceso se utiliza para convertir ADP (p.33) en ATP (p. 33)
aceptor de electrones, electron acceptor, molécula que funciona como un coenzima (\uparrow) con una deshidrogenasa (\uparrow) que cataliza (p. 28) la eliminación del hidrógeno durante la respiración celular (\uparrow). Acepta electrones (\uparrow) y los pasa a otros aceptores de electrones situados en niveles energéticos más inferiores.
NAD, NAD, nicotinamida-adeninadinucleótido. Uno de los coenzimas (\uparrow) o aceptores de electrones (\uparrow) más importantes relacionados con la respiración celular (\uparrow).
adenindinucleótido (NAD) NADP, NADP, nicotinamida-adeninadinucleótido fosfala adición de un grupo fosfato más un. \mathbf{P} da NADP

oxidación, oxidation (n), reacción en la cual una sustancia (1) pierde electrones (p.30); (2) recibe un oxigeno; o (3) es privado de hidrógeno. oxidar (v).
reducción, reduction (n), reacción en la cual una sustancia (1) gana electrones (p. 30); (2) es privada de oxígeno; o (3) recibe un hidrógeno. reducir (v).
citocromo, cytochrome (n), sistema de coenzimas (p.30) que está implicado en la respiración celular (p. 30) y que tiene grupos prostéticos (p.30) que contienen hierro. Los citocromos están implicados en la fase de producción de ATP (\downarrow) por fosforilación oxidativa (p.34).
flavoproteína, flavoprotein (n), FP. Importante coenzima (p.30) implicada en la respiración celular (p.30).
vitamina \mathbf{B}, vitamin B, nombre genérico de un grupo de vitaminas (p 25) que desempeñan un papel im portante en la respiración celular (p.30) funcionando como coenzimas (p.30)
aerobia, aerobic (adj.) dícese de una reacción; p. ej. la respiración (p. 112), que sólo puede tener lugar en presencia de oxígeno gaseoso libre. En la respiración aerobia, los compuestos orgánicos (p. 15) se convierten en dióxido de carbono y agua con liberación de energía. Los organismos que usan la respi ración aerobia se llaman aerobios.
anaerobia, anaerobic (adj), dicese de una reacción; p. ej: la respiración (p. 112), que tiene lugar en ausencia de oxígeno ḡaseoso libre. En la respiración anaerobia los compuestos orgánicos (p.15), tales como los azúcares, son desintegrados en otros com puestos, tales como dióxido de carbono y etanol con una menor liberación de energía. Los organismos que usan respiración anaerobia se llaman anaerobios.
metabolismo basal, basal metabolism, cantidad míni ma de energía que el cuerpo necesita para mantenerse vivo. Varía con la edad, el sexo y el estado de salud del organismo.
IMB, BMR, índice metabólico basal = metabolismo basal (\uparrow).
indice metabólico, metabolic rate, en la respiración celular (p.30), velocidad a la que se consume oxigeno y se produce dióxido de carbono. Conocido también por tasa metabólica
valor calorífico, calorific value, cantidad de calor producido, medido en calorias, cuando se quema por completo una determinada cantidad de alimento Véase también joule (p.97).

respiración aerobia

carbohidrato

ATP, ATP adenosintrifosfato. Compuesto orgánico (p. 15) constituido por adenina (p.22), ribosa (p. 22) y tres grupos fosfatoinorgánicos. Es un nucleótido (p. 22) y es el responsable del almacenamiento temporal de energia durante la respiración celular (p.30). Se forma por la adición de un tercer grupo fosfato al ADP (\downarrow), que almacena la energía que se libera cuando lo requieren otros procesos metabóli$\cos (p .22)$.
ADP, ADP, adenosindifosfato. Compuesto orgánico (p. 15) que acepta un grupo fosfato para poder formar ATP (\uparrow).

ADP, ATP y sus reacciones

ADP (dos grupos fosfato)
fosforilación que acumula energía hidrólisis que libera energía

ATP (tres grupos fosfato
enlace fosfato, phosphate bond, enlace que une los grupos fosfato en el ATP (p. 33) y al que suele denominarse, de una manera equivoca, enlace de alta energía. La energía se almacena a través de la molécula de ATP, pero se libera cuando se rompen los enlaces fosfato y se forman otros distintos
fosforilación oxidativa, oxidative phosphorylation, proceso en el cual se produce ATP (p. 33) a partir de ADP (p .33) en presencia de oxigeno durante la respiración celular (p.30) aerobia (p.32)
glicólisis, glycolysis (n), primera parte de la respiración celular (p.30) en la que la glucosa (p. 17) es convertida en ácido pirúvico (\downarrow) dentro del citoplasma (p.10) de todos los organismos vivos. Utiliza un sistema complejo de enzimas ($p .28$) y coenzimas (p.30). Produce energía para períodos breves en forma de ATP (p.33) cuando existe escasez de oxigeno.
ácido pirúvico, pyruvic acid, compuesto orgánico (p. 15) formado como producto final de la glicólisis
(\uparrow). Por cada molécula de glucosa ($p .17$) se forman dos de ácido pirúvico.
ciclo de Krebs, Kreb's cycle, parte de la respiración celular (p.30) en la que el ácido pirúvico (\uparrow), en presencia de oxigeno y a través de un complejo ciclo de reacciones controladas enzimáticamente (p.28), produce energía en forma de ATP (p.33) y productos intermedios que dan lugar a otras sustancias, tales como ácidos grasos (p.20) y aminoácidos ($p .21$). Tiene lugar en las mitocondrias.
fermentación, fermentation (n), proceso en el cual e ácido pirúvico (\uparrow), en ausencia de oxígeno, recoge átomos de hidrógeno y de esta manera produce NAD (p.31), pudiendo entonces usarlos de nuevo en a glicólisis (\uparrow)
fermentación del ácido láctico, lactic acid fermenta tion, fermentación (\uparrow) a partir de la cual se produce ácido láctico. En los animales superiores esto tiene lugar especialmente en los músculos ($p .143$), donde existe déficit de oxígeno (p. 117)

fermentación alcohólica, alcoholic fermentation, fermentación (\uparrow) en la que se producen etanol (al cohol) y dioxido de carbono. En las industrias vinícolas y de destilación se utiliza este proceso cuando las levaduras (p.49) descomponen los azúcares para obtener la energía necesaria para su reproducción (p.173) y crecimiento.
división nuclear, nuclear division, proceso en el cua el núcleo de una célula ($p .13$) se divide en dos en e desarrollo de nuevas células y tejidos (p.83), de manera que puede producirse el crecimiento y reempla zarse las células dañadas. Existen dos tipos de división nuclear: mitosis (p.37) y meiosis (p.38)
centriolo, centriole (n), estructura similar a un cuerpo basal (p.13). Los centriolos se encuentran fuera de la membrana nuclear (p. 13) y se dividen durante la mitosis ($p .37$), formando los dos extremos del huso acromático (p. 37).
cromatidio, chromatid (n), cada una del par de estructuras filiformes que aparecen juntas como cromosomas ($p .13$) y que se acortan y engrosan durante la profase (p. 37) de la división nuclear (\uparrow). Se conoce también por el nombre de cromátida.
centrómero, centromere (n), región en cualquier lugar a lo largo del cromosoma (p.13), donde se ejerce fuerza durante la separación de los cromatidios (\uparrow) en la mitosis (p. 37) y la meiosis (p. 38).
cromómero, chromomere (n), cada uno de los numerosos gránulos de cromatina (p.13) que aparecen a lo largo de un cromosoma (p. 13) en división, proba blemente como resultado de la espirilación y deses pirilación dentro de los cromatidios (\uparrow). Aparece en forma de "saliente" o constricción
célula somática, somatic cell, cualesquiera de las cé lulas de un organismo vivo distintas a las células ger minales (\downarrow) y que contienen el número caracteristico de cromosomas (p. 13), generalmente diploide (\downarrow), del organismo
célula germinal, germ cell. cualquier célula que da lu gar a un gameto (p. 175). Es toda célula de un orga nismo vivo distinta a una célula somática (\uparrow) y que participa en la reproducción (p. 173) del organismo Contiene sólo la mitad del número característico de cromosomas (p.13) del organismo; es decir, es ha ploide (\downarrow).

fases diploide y haploide en el ciclo vital de una angiosperma

haploide, haploid (adj.), dícese de una célula que tie ne solo cromosomas impares; mitad del número diploide (\downarrow) de cromosomas no emparejados en el es tado haploide. Las células germinales (\uparrow) de la mayoría de los animales y de las plantas son haploides. Véase también poliploidía, etc. (p. 207).
diploide, diploid (adj.), dícese de una célula que tiene cromosomas ($p .13$) que se presentan en pares ho mólogos (p.39). Las células somáticas (\uparrow) de la mayoría de las plantas superiores y de los animales son diploides. Es el doble del número haploide (\uparrow)
mitosis (para mayor claridad solo se muestran dos pare
protase Los cromosomas se visualizan en el núcleo, cada uno se duplica en dos cromatidios unidos por un centrómero

meiaiase Se desintegran la membrana nuclear y el nucleolo. Se forman las fibras del huso Los cromosomas se acortan y engrosan, disponiéndose a tel huso acromático polos del huso acromatico

anafase Los cromatodios se separan en los centrómeros. Los cromatodios hermanos se dirigen a polos opuestos del huso

telofase Vuelven a formarse la membrana nuclear y los comienzan a perder su estructura compacta structura compact

tos cromosomas deja de ser visibles
mitosis, mitosis (n), proceso normal de división nuclear (p. 35) en dos núcleos hijos (p. 13) durante el crecimiento vegetativo. En el curso de la mitosis cada cromosoma (p. 13) se duplica a sí mismo dirigiéndose cada uno de los duplicados a núcleos hijos distintos. Las celulas hijas son identicas una a otra y a la celula parental
huso acromático, spindle (n), material fibroso (p. 143) que se forma a partir de los centríolos ($p .35$) durante la mitosis (\uparrow) y la meiosis (p. 38). Participa en la distribución de los cromatidios (p.35) a las células hijas. Los cromosomas (p.13) se disponen en su ecuador en el curso de la metafase (\downarrow).
polo, pole (n), cada uno de los dos puntos del huso acromático (\uparrow), que es el lugar de formación de las fibras ($p .143$) de éste, a partir de los centríolos (p. 35).
ecuador, equator (n), parte del huso acromático (\uparrow), a medio camino entre los polos (\uparrow), y en la cual se disponen los cromosomas (p. 13) mediante los filamentos del huso. Se conoce también como placa ecuatorial.
placa ecuatorial =ecuador (\uparrow)
interfase, interphase (n), fase del ciclo celular en la que la célula está preparándose para la división nuclear (p.35). Durante ella, el ADN ($p .24$) se replica para producir suficiente cantidad para las células hijas
profase, prophase (n), primera fase de la división nuclear (p. 35) en la que los cromosomas (p.13) se vuelven visibles y los cromatidios (p.35) también resultan observables, mientras que el nucléolo (p. 13) y la membrana nuclear (p.13) comienzan a disolverse.
metafase, metaphase (n), fase de la división nuclear (p.35) en la que ha desaparecido la membrana nuclear (p.13) y los cromosomas (p.13) se disponen en la placa ecuatorial (\uparrow) del huso acromático (\uparrow). Después, los cromatidios (p.35) comienzan a separarse
anafase, anaphase (n), fase de la división nuclear (p. 35) en la que se dividen los centrómeros (p. 25) y los cromatidios (p. 35) se desplazan hacia los polos opuestos mediante la contracción del huso acromático (\uparrow)
telofase, telophase (n), fase de la división nuclear (p.35) en la que los cromatidios (p.35) llegan a los polos (\uparrow) y el citoplasma ($p .10$) comienza a dividirse para formar dos células hijas separadas en interfase (\uparrow). Las fibras (p. 143) del huso acromático (\uparrow) se disuelven, mientras que en cada célula hija vuelven a formarse el nucléolo (p. 13) y la membrana nuclear (p.13) y los cromosomas adquieren de nuevo su forma fibrilar.
meiosis, meiosis (n), división nuclear (p. 35) de tipo especial que comienza en una célula diploide (p.36) especial quer en dos etapas. Cada una de éstas es y timilar a una mitosis (p.37), pero los cromosomas similar a una mitosis (p. 37), pero los cromosomas (p. 13) se duplican solo una vez antes de la primera division, de modo que cada una de las cuatro celulas hijas resultantes es haploide (p.36). Se produce durante la formación de los gametos (p. 175).

mitosis

(no se muestran el citoplasma
y la membrana)

mitosis	meiosis
se produce en células somáticas durante el crecimiento y los procesos de reparación	se produce en los órganos sexuales durante la formación de los gametos
no se emparejan ni separan cromosomas homólogos	emparejamiento y separación de cromosomas homólogos
no se forman quiasmas	se forman quiasmas que dan lugar a sobrecruzamiento y recombinación
una separación de material nuclear, es decir. separación sólo de cromatidios	dos separaciones de material nuclear, es decir, separación de cromosomas homólogos (1.a división) y cromatidios (2.a $^{\text {división) }}$
se forman 2 núcleos hijos	se forman 4 núcleos hijos
núcleos hijos idénticos	los núcleos hijos no son idénticos
núcleos hijos diploides	núcleos hijos haploides

diferencias entre la

 mitosis y la meiosispares de cromosomas homólogos

bivalente, bivalent (n), cada uno del par de cromosomas (p.13) homólogos (\downarrow) que se asocian durante la primera profase (p .37) de la meiosis (\uparrow).
quiasmas, chiasmata ($n . p l$.), puntos en los que los cromosomas (p. 13) homólogos (\downarrow) permanecen en contacto cuando los cromatidios (p.35) se separan durante la primera profase (p.37) de la meiosis (\uparrow) Puede haber hasta ocho quiasmas en un par de bivalentes (\uparrow) de cromosomas
terminalización, terminalization (n), proceso en el cual los quiasmas (\uparrow) se desplazan hacia los extremos de los cromosomas (p. 13) durante la profase (p. 37) de la meiosis (\uparrow).
cromosomas homólogos, homologous chromosomes dos cromosomas (p. 13) que forman un par en e que los genes (p. 196) que hay dispuestos en toda su longitud controlan caracteristicas idénticas del or ganismo, tal como el color de los ojos o la altura
primera división meiótica, first meiotic division, primera de las dos etapas de la meiosis (\uparrow) en la cual tiene lugar una división nuclear (p. 35) similar a la mitosis (p.37), dando como resultado la separación de los cromosomas (p. 13) homólogos (\uparrow).
segunda división meiótica, second meiotic division, segunda de las dos etapas principales de la meiosis (p.37), en la que tiene lugar una segunda división nuclear (p.35), y las dos células hijas procedentes de la primera división meiótica (\uparrow) se dividen en otras dos células para dar como resultado cuatro células hijas haploides (p.36), conteniendo cada una de estas celulas uno de los cromatidios (p. 35) idénticos.
clasificación, classification (n), agrupación de todos los organismos vivientes en una serie ordenada de grupos relacionados y dotados cada uno de un nombre. clasificar (v).
organismo, organisms (n), cualquier ser viviente. Los organismos pueden crecer y ieproducirse (p. 175).
taxon, taxon (n), término genérico para cualquier grupo de una clasificación (\uparrow) . sin que importe su rango (\downarrow).
taxonomia, taxonomy (n), ciencia que se ocupa de la clasificación (\uparrow)
sistema binario, binomial system, sistema para dar un nombre a cualquier organismo viviente, creado por el botánico sueco Linneo (1707-78), en el que a cada organismo se le da un nombre en dos partes, por lo general latinizado. La primera palabra indica el género (\downarrow) y la segunda la especie (\downarrow). Mientras que los nombres comunes sólo suelen entenderse en el lugar de origen, el nombre científico es reconocido internacionalmente por los hombres de ciencia. Por ejemplo, el ave que lleva el nombre de halcón peregrino recibe la denominación científica de Falco peregrinus.
especie, species (n), grupo de organismos vivos similares cuyos miembros pueden cruzarse entre sí para producir una descendencia fértil (p. 175), que no puede cruzarse con otros grupos de especies. específico (adj.).
género, genus (n), grupo de organismos que contiene cierto número de especies (\uparrow) similares. En el nombre científico Falco peregrinus, Falco es el nombre genérico que designa a todas las aves clasificadas (\uparrow) como halcones

clasificación del halcón peregrino siguiendo las series de rangos y sus nombres

rango	nombre cientifico de los grupos taxonómicos (taxones)	nombre común
reino	animal	animales
filum o tipo	cordados	vertebrados
clase	aves	aves
orden	falconiformes	aves de presa
	falcónidos	halcones
género	Falco	halcones verdaderos
especie	peregrinus	halcón peregrino

rango, rank (n), cada uno de los grupos principales en que se clasifican (\uparrow) los organismos vivientes. El más grande, que incluye los organismos con diferentes planes estructurales a los de otro grupo de igual importancia, se llama reino (\downarrow). Cada reino puede dividirse, sobre la base de la diversidad (p.213), en cierto número de tipos o fila (sing: filum), y asi sucesivamente. Los nombres de los rangos principales. ordenados desde los más grandes a los menores, son: reino, tipo, clase, orden, familia, género (\uparrow) y especie (\uparrow).
reino, kingdom (n), taxon (\uparrow) o rango (\uparrow) superior. Dicho de manera más sencilla, la vida puede agruparse en los reinos animal o vegetal. Esto, sin embargo, es una simplificación excesiva y en el presenie libro dividimos a los seres vivientes en cinco reinos: moneros ($p .42$), protistos ($p .44$), hongos (p .46), plantas y animales.
clasificación artificial, artificial classification, clasificación (\uparrow) en la que los organismos están ordenados en grupos basados en la analogía (p. 211) aparente, según similitudes que de hecho no tienen ancestros cơmunes.
clasificacion natural, natural classification, clasificación (\uparrow) en la que los organismos se ordenan en grupos basados en similaridades homólogas (p. 211) que demuestran ancestros comunes.
evolución y relación de los principales grupos de plantas y animales

microbiología, microbiology (n), estudio o ciencia de los organismos vivientes muy pequeños [microscópi\cos (p. 9)] o submicroscópicos, que incluye las bacterias (\downarrow) y las algas verdiazules (\downarrow).

Moneros, monera (n), reino (p. 41) de los organismos procariotas (p.8), que incluye las bacterias (\downarrow) y las algas verdiazules (\downarrow)
bacterias, bacteria (n. pl.), grupo de organismos procarióticos (p.18) microscópicos (p.9) que pueden ser unicelulares ($p .9$) o pluricelulares (p.9). Carecen de orgánulos (p.8) limitados por membranas (p. 14) y no contienen vacuolas (p. 11) grandes. La mayoría de las bacterias son heterótrofas (p.92), aunque algunas son autótrofas (p.92). Su respiración (p. 112) puede ser aerobia (p.32) o anaerobia (p.32). Las bacterias se reproducen (p.173) principalmente por división celular asexual. Las bacterias heterótrofas pueden causar enfermedades. Son importantes en la descomposición de los tejidos (p.83) animales o vegetales para liberar nutrientes utilizables por las plantas superiores y para depurar aguas residuales.
bacilo, bacillus (n), bacteria (\uparrow) en forma de varilla. coco, coccus (n), bacteria (\uparrow) de forma esférica.
estreptococo, streptococcus (n), coco (\uparrow) que se presenta en forma de cadena.
estafilococo, staphylococcus (n), coco (\uparrow) que se presenta en forma de acúmulo.
espirilo, spirillum (n), bacteria $(\uparrow$) de forma espiral.
colorante Gram, Gram's stain, colorante usado en el estudio de las bacterias (\uparrow). Las que absorben el producto violeta son grampositivas, mientras que las que no lo hacen son gramnegativas. Los antibióticos (p. 233) destruyen más fácilmente las primeras
mixobacteria, myxobacterium (n), bacilo (\uparrow) que tiene una delicada pared celular (p.8) flexible y que es capaz de deslizarse sobre superficies sólidas.
espiroqueta, spirochaete (n), espirilo (\uparrow) que es capaz de desplazarse flexionando el cuerpo. Algunas son parásitos ($p .92$) y causan enfermedades como la siffilis.
rickettsia, rickettsia (n), cualesquiera de los varios bacilos (\uparrow) que viven como parásitos (p. 110) de algunos artrópodos ($p .67$) y que pueden ser transmitidos a seres humanos causando enfermedades como el tifus.

estructura de una bacteria

 generalizada

bacterias

 ctinomicete, actinomycete (n), bacteria (\uparrow) grampositiva (\uparrow) que vive en el suelo y que tiene sus células dispuestas en filamentos (p. 181). Pueden usarse para producir antibióticos (p.233), tales como la estreptomicina.
agente patógeno, pathogen (n), cualquier bacteria $(\uparrow$) parásita, virus (\downarrow) u hongo (p.44) que produce enfermedades.
toxina, toxin (n), veneno producido por un organismo vivo, especialmente una bacteria (\uparrow), y que puede causar los síntomas de enfermedad provocados por la acción de un agente patógeno (\uparrow). tóxico (adj.).
algas verdiazules, blue-green algae, grupo de organismos procarióticos (p.8) microscópicos (p. 9) conocidos como cianofitas. Contienen clorofila (p. 12) y otros pigmentos (p. 126) y están ampliamente distribuidos en cualquier lugar que haya agua. Algunos son capaces de fijar el nitrógeno atmosférico en compuestos (p.15) orgánicos.
virus, virus (n), agente patógeno (\uparrow) que puede ser o no un organismo vivo y que es \tan pequeño que solamente puede observarse con ayuda del microscopio electrónico (p.9). No tiene orgánulos (p.8) normales. Un virus únicamente vive en el interior de un huésped (p. 111) y en el exterior se presenta como un producto químico no viviente. Los virus suelen nombrarse según el huésped del que son específicos y os sintomas que causan, como, p. ej., el virus del mosaico del tabaco. Un virus consiste en una cubierta externa de proteína ($p .21$) que rodea un núcleo central de ácidos nucleicos (p.22).
bacteriófago, bacteriophage (n), virus (\uparrow) que infecta una bacteria (\uparrow). Consiste en una cabeza, que contiene su ADN (p. 24) o ARN (p. 24), rodeada de una cubierta de proteina (p .21) y una cola que acaba en una placa provista de un cierto número de fibras (p. 143). fago (abr.).
ciclo vital de un bacteriófago

2 partes de nuevos bacteriófagos sintetizadas en la célula bacteriana

3 bacteria destruida se liberan nuevos bacteriófagos

Protistos, Protista (n), reino (p. 41) de organismos eucarióticos (p. 9) unicelulares (p.9), algunos de los cuales han sido adscritos en el pasado a los reinos animal o vegetal, o a ambos; p. ej.: los protozoos (\downarrow) y las algas unicelulares (\downarrow).
fisión binaria, binary fission, reproducción (p. 173) asexual en la que un único organismo parental da lugar a dos organismos hijos. El núcleo (p. 13) se divide por mitosis (p.37), seguido de la división del citoplasma (p. 10).
algas, algae ($n . p l$.), organismos de cuerpo unicelular (p.9) o pluricelular sencillo (p.9), capaces de fabricar su propio material nutriente mediante fotosintesis (p. 93). Los tipos unicelulares pertenecen a los protistos (\uparrow), mientras que los pluricelulares, como, p. ej., los sargazos, se consideran plantas.
algología, phycology (n), ciencia o estudio de las algas (\uparrow).
Protozoos, Protozoa (n), división de los protistos (\uparrow), en la que los organismos microscópicos ($p .9$) son unicelulares ($p .9$), existen como una masa continua de citoplasma ($p .10$), ingieren ($p .98$) su alimento y carecen de cloroplastos ($p .12$) y pared celular (p. 8). Los protozoos están muy extendidos y son importantes en las comunidades naturales.
Ameba, Amoeba (n), género (p 40) de protozoos (\uparrow) Sus miembros consisten en una célula móvil (p. 173) sencilla, capaz de tomar partículas alimenticias englobándolas mediante pseudópodos (\downarrow)
pseudópodo, pseudopodium (n), protuberancia temporal en la que fluye el citoplasma (p. 10) de un protozoo (\uparrow) y que le permite moverse y alimentarse.
movimiento ameboide, amoeboid movement, proceso de locomoción (p. 143) que resulta de la formación de pseudópodos (\uparrow).
vacuola alimenticia, food vacuole, vacuola (p. 11) que contiene una partícula de alimento y una gota de agua, englobada por los pseudópodos (\uparrow) de un protozoo (\uparrow).
ectoplasma, ectoplasm (n), membrana plasmática (p.13) externa de un protozoo (\uparrow). Gel fibroso (p. 143) con una estructura menos granular que el endoplasma (\downarrow) al que rodea. Participa del movimiento amebiano (\uparrow) y en la división celular.
endoplasma, endoplasm (n), citoplasma (p. 10) de un protozoo (\uparrow). Es más fluido y granular que el ectoplasma (\uparrow).
fisión binaria en una bacteria

par de

 cromosomas
dos células idénticas
a la célula parental
Ameba

movimiento de un cilio

 batido hacia delante
batido de recuperación
gel, gel (n), material gelatinoso.
gránulo, granule (n), partícula muy pequeña. granular (adj.).
Paramecium, Paramecium (n), género (p. 40) de protozoos (\uparrow) Aunque es unicelular (p 9) su organización es más compleja que en Amoeba. Se desplaza por medio de cilios (p.12); tiene dos tipos de núcleo (p 13): macronúcleos (\downarrow) y micronúcleos (\downarrow), y se reproduce ($p .1 / 3$) asexuaımente mediante fisión binaria (\uparrow) transversal.

movimiento ciliado, ciliate movement, proceso de locomoción (p.143) que implica el batido de cilios (p.12) contra el agua. En el movimiento de recuperación, los cilios se relajan, de manera que no baten contra el agua en la dirección contraria.
estigma, eye spot, orgánulo (p.8) sensible a la luz. Está presente en muchos Protozoos (\uparrow)
campo oral, oral groove, surco ciliado (p.12) de Paramecium (\uparrow) hacia el cual son empujadas las partímecium (\uparrow) hacia el cual son empujadas as partiConduce a la boca, o citostoma, y a la cavidad digestiva.
micronúcleo, micronucleus (n), el menor de los dos núcleos (p .13) de Paramecium, que se divide por mitosis (p. 37) y entrega gametos (p. 175) durante la conjugación (\downarrow).
macronúcleo, meganucleus (n), el mayor de los dos núcleos (p.13) de Paramecium (\uparrow), que está relacionado con la producción de proteínas (p.21) para el organismo
conjugación, conjugation (n), proceso de reproduc ción (p. 173) sexual en Paramecium (\uparrow) y otros Protozoos (\uparrow), en el que dos células se unen temporalmente e intercambian gametos (p. 175).
Euglena, Euglena (n), genero (p. 40) de protistos (\uparrow). Se desplaza por medio de un flagelo (p.12) y se reproduce (p . 173) mediante fisión binaria (\uparrow) transversal. No tiene pared celular (p.8) rígida, pero sí una película transparente elástica. Contiene cloroplastos (p .12) mediante los que produce sus propios nutrientes por fotosíntesis (p.93), aunque tam bién es capaz de ingerir ($p .98$) alimento a través de un citostoma.
micologia, mycology (n), ciencia o estudio de los hongos (\downarrow).
Hongos, Fungi (n), reino (p. 41) de organismos eucarióticos (p.9) incapaces de sintetizar alimentos por fotosíntesis (p.93). En lugar de ello toman los nutrientes (p.92) de su entorno. Pueden ser microscópicos (p.9) o muy grandes. Pueden ser unicelulares (p.9) o estar formados por hifas (\downarrow). Viven como saprófitos (p.92) o parásitos (p. 110) de plantas o animales. Los hongos pueden reproducirse (p. 173) sexual o asexualmente.
hifa, hypha (n), filamento ($p .181$) haploide ($p .36$) ramificado, que es la unidad básica de la mayoria de los hongos (\uparrow). Es una estructura tubular compuesta de una pared celular ($p .8$) con un recubrimiento de citoplasma (p.10) y que rodea a una vacuola (p. 11). En algunos hongos las hifas pueden estar divididas por tabiques o septos. La pared celular está compuesta principalmente de quitina (p. 49).
micelio, mycelium (n), masa de hifas (\uparrow) que constituye el volumen principal de un hongo (\uparrow).

micelio

cenocítico, coenocytic (adj.), dicese de hifas (\uparrow), consistentes en masas tubulares de protoplasma (p. 10) que contienen muchos núcleos (p 13).
dicarion, dikaryon (n), hifa (\uparrow) o micelio (\uparrow) formados por células que contienen dos núcleos ($p .13$) haploides (p.36) que se dividen simultáneamente cuando se forma una nueva célula.
Ficomicetes, Phycomycetes (n. pl.), grupo de hongos (\uparrow) que tienen hifas (\uparrow) sin septos (tabiques). Los ficomicetes se reproducen por medio de zigosporas (\downarrow) y asexualmente mediante zoosporas (\downarrow). Este grupo incluye al gran género (p.40) Mucor y a otro relacionado con él, Rhizopus.
ficomicetos, p. ej. moho

columela

homotálica, homothallic (adj.), dicese de la reproducción ($p .173$) sexual de ciertos hongos (\uparrow) y algas (p.44) en los que un talo ($p .52$) único produce los gametos (p. 175) opuestos de diferente tamaño para realizar las funciones sexuales, por lo que la especie es, de hecho, hermafrodita (p. 175).
heterotálica, heterothallic (adj.), dícese de la reproducción sexual (p. 173) de ciertos hongos (\uparrow) y algas (p .44) en los que la reproducción solamente puede tener lugar entre dos talos (p .52) genéticamente diferentes, que no pueden reproducirse de manera independiente. En algunos hongos, los dos talos pueden ser de forma diferente, siendo unos masculinos y otros femeninos, mientras que en otros puede no haber diferencia en la forma, pero los gametos ($p .175$) son diferentes en cuanto a tamaño entre dos cepas genéticamente distintas de la misma especie (p.40).
zigospora, zygospore (n), espora (p. 178) en reposo de paredes gruesas producida por un ficomicete (\uparrow) durante la reproducción ($p .173$) sexual mediante la fusión de dos gametos (p. 175) llamados gametangios.
zoospora, zoospore (n), espora (p. 178) flagelada (p. 12) desnuda, producida por un esporangio (p. 178) durante la reproducción (p. 173) asexual.

Ascomicetes, Ascomycetes (n. pl.), grupo de hongos (\uparrow) que poseen hifas (\uparrow) con septos. Los ascomicetes se reproducen (p. 173) sexualmente por medio de ascosporas (\downarrow) y asexualmente mediante conidios (\downarrow). Penicillium es un género importante de ascomicetes, a partir de los cuales se fabrican antibióticos (p. 233).
asca, ascus (n), célula esférica o casi cilíndrica en la que se forman ascosporas (\downarrow). Varias ascas pueden agruparse en un cuerpo fructífero que es visible a simple vista.
ascospora, ascospore (n), espora (p. 178) que se forma en el asca (\uparrow) como resultado de la fusión de núcleos (p.13) haploides (p.36), seguida de una meiosis (p.38) para restaurar el estado haploide. Normalmente, cada asca suele contener ocho ascosporas
septo, septum (n), tabique a través de una hifa (\uparrow)
conidio, conidium (n), espora ($p .178$) o yema que se produce durante la reproducción asexual (p.173) a partir de los ápices de determinadas hifas. Véase e diagrama de la p. 48

Basidiomicetes, Basidiomycetes (n. pl.), grupo de hongos ($p .46$) que tienen hifas ($p .46$) con septos. Las hifas suelen agruparse en cuerpos fructiferos como en las setas (\downarrow). Se reproducen (p. 173) sexualmente por basidiosporas (\downarrow). Agaricus, que incluye el champiñón, es un género (p.40) de este grupo.

bastoncillo sobre la cual crecen las basidiosporas (\uparrow) sobre un corto pedúnculo, generalmente cuatro cada vez.
esterigmas, sterigmata ($n . p l$.), pedúnculo sobre un basidio (\uparrow), en el cual crecen las basidiosporas (\uparrow) Cada célula basidial suele tener cuatro esterigmas.
sombrerillo, cap (n), estructura en forma de paraguas que corona el tallo central de los grandes hongos (p. 46) y forma el cuerpo fructífero; en ella se producen las esporas (p.178).
píleo, pileus $(n)=$ sombrerillo (\uparrow).
seta comestible, mushroom (n), nombre común que recibe el cuerpo fructífero de los Basidiomicetes (\uparrow) de diversos órdenes, que son buenos comestibles
seta, toadstool (n), nombre común que recibe el cuerpo fructifero de los Basidiomicetes (\uparrow) de diferentes ordenes. El termino incluye las setas comestibles (\uparrow) y aquellas otras especies que no lo son, aunque no necesariamente sean venenosas
basidiospora, basidiospore (n), espora (p. 178) haploide (p.36) producida tras reproducción sexual (p. 173) y meiosis (p. 38), que crece externamente en el cuerpo fructifero de los Basidiomicetes (\uparrow)

cuerpo fructífero de un basidiomiceto

laminillas, gills (n. pl.), estructuras laminares que hay en la parte inferior del sombrerillo (\uparrow) del cuerpo fructífero de un hongo (p.46). Llevan las células productoras de esporas (p. 178) o basidios.
levadura, yeast (n), hongos (p. 46) unicelulares (p. 9) muy importantes para la fermentación, que son tam bién fuente de proteínas (p.21) y minerales. La mayoria de las levaduras son Ascomicetes (p. 47)
Hongos imperfectos, Fungi imperfecti, grupo perteneciente a los hongos (p. 46) que se reproducen (p. 173) asexualmente
roya, rust (n), hongo (p. 46) Basidiomicete (\uparrow) parásito (p .92). Las royas son una peste grave de los cultivos y pueden ocasionar grandes pérdidas.
carbón, blight (n), enfermedades de las plantas, tales como la patata, que resulta de la rápida extensión de las hifas ($p .46$) de los hongos ($p .46$), tales como Phytophthora, por las hojas del huésped (p.110).
quitina, chitin (n), material córnes que se encuentra en la pared celular ($p .8$) de muchos hongos (p.46) y que está compuesto de polisacáridos (p. 18). Es similar al material que protege el cuerpo de los insectos (p.69).
micorriza, mycorrhiza (n), asociación simbiótica (p.228) que tiene lugar entre un hongo (p.46) y las raices de ciertas plantas superiores, especialmente árboles.
liquen, lichen (n), asociación (p. 227) simbiótica (p .228) de un alga (p .44) y un hongo (p .46) para formar una planta de crecimiento lento que coloniza (p. 221) medios tan inhospitos como son las rocas de regiones montañosas o el tronco de los árboles.
mohos mucosos, slime mould, hongos (p. 46) ampliamente distribuidos, formados por masas de protoplasma (p .10), que contienen numerosos núcleos (p.13) y que viven en condiciones de humedad. Se reproducen por medio de esporas ($p .178$) y a menudo se les clasifica (p.40) con los hongos. Durante parte de su vida, los mohos mucosos son capaces de emprender movimientos ameboides (p.44).

botánica, botany (n), estudio o ciencia de las plantas o de la vida vegetal.
Plantas, Plantae (n), uno de los cinco reinos (p. 41) de organismos vivos que incluye todas las plantas capaces de fabricar su propio alimento por fotosíntesis (p. 93). Incluye las algas (p. 44) pluricelulares (p.9). los Musgos (p.52), las Filicales (p.56), las gimnospermas (p .57) y las angiospermas (p.57).
Talofitas, Thallophyta (n), dentro de la clasificación (p.40) en dos reinos (p.41) de todos los organismos vivos, una división formada por todos los organismos no animales, en los que el cuerpo no está diferenciado en tallos, raices y hojas. La reproducción (p. 173) se produce sexualmente por fusión de gametos (p.175) y asexualmente mediante esporas (p 178) Incluye las bacterias (p 42) las algas ver diazules ($p .43$), los hongos ($p .46$) y los líquenes (p. 49).
planta vascular, vascular plant, planta que tiene un sistema vascular (p. 127) para transportar el agua y los materiales nutrientes a través suyo y que proporciona también soporte.
algas verdes coloniales

Spirogyra, Spirogyra (n), género (p. 40) de típicas algas filamentosas (p. 181) de las clorofitas (\uparrow). Se gas filamentosas (p. 181) de las corotitas (\uparrow). Se cadena simple de células idénticas, conteniendo cada una de ellas el característico cloroplasto (p. 12) espiral.
Feofitas, Phaeophyta (n), división de las algas (p. 44) en la que la mayoría de las especies son marinas, como, p. ej., las algas pardas que llegan a las playas. Contienen clorofila (p.12) y el pigmento marrón (p. 126) fucoxantina, y llevan el nombre genérirrón (p. 126) fucoxantina, y llevan el nombre generi-
co de algas pardas. Son pluricelulares (p. 9) y almacenan alimento en forma de azúcares.
Fucus, Fucus (n), género típico de las Feofitas (\uparrow) Son las algas comunes de la costa. Cada planta se diferencia en pie, con el que se fija al sustrato, un tallo rígido llamado estipete y los frondes planos.
vejiga ${ }^{P}$, bladder ${ }^{P}(n)$, saco lleno de aire que existe en algunos miembros de las Feofitas (\uparrow). Sirven para flotar.
conceptáculo, conceptacle (n), cualesquiera de las numerosas cavidades que existen en el ápice de los frondes de algunos miembros de las Feofitas (\uparrow), tales como las algas dotadas de vejigas flotadoras. Se abren por un poro (p. 120) llamado ostiolo y además de órganos sexuales contienen masas de pelos estériles llamados parafisas.

Feofitas algas pardas

Briofitas, Bryophyta (n), división de las Plantas (p.50) esporofito de hepática que incluye las Hepáticas (\downarrow), las Antoceradas (\downarrow) y los Musgos (\downarrow). Las briofitas carecen de teiidos vasculares (p. 83), aunque los tallos de algunos musgos tienen un filamento central de tejido conductor. Suelen ser plantas de lugares cálidos, pero algunas son acuáticas; otras viven en hábitats (p .217) desiertos o en lugares fríos y a veces pueden ser la forma dominante de vida vegetal. Todas las briofitas muestran una clara alternancia de generaciones (p. 176), con una conspicua generación gametofítica (p. 177), independiente en la obtención del alimento, y una generación esporofítica (p. 177) de breve duración que depende del gametofito. Son pequeñas plantas aplanadas con hojas y tallos, pero \sin raíces, que se fijan al sustrato por medio de un rizoide (\downarrow).
Hepáticas, Hepaticae (n. pl.), familia de las Briofitas (\uparrow). Son las más sencillas de todas éstas y pueden ser un gametofito (p. 177) aplanado y \sin hojas una serma garente de talo (1) o una rastrera dotas, una forma carente de talo (\downarrow) o una rastrera dotada de ramificación en forma de Y Suelen ser acuáticas vivir en suelo húmedo o como epífitas (p.228).

Antoceradas, Anthocerotae (n. pl.). familia de Briofitas (\uparrow). Son plantas con un talo (\downarrow) verde lobulado, que se fija al sustrato mediante un rizoide (\downarrow); crecen por lo general sobre suelos húmedos o lodo. Musgos, Musci (n. pl.). familia de Briofitas (\uparrow). Son las plantas más avanzadas de esta división y crecen a modo de almohadillas erguidas, prácticamente sin ramificarse, o como esteras ramificadas y rastreras. Están ampliamente distribuidos en todo el mundo y viven en condiciones de humedad, tales como bosques, o incluso algunos en medio acuático y otros llegan a sobrevivir en medios más secos, como son los muros o el tejado de las casas
talo, thallus (n). término general para designar el cuer po de una planta que no está diferenciado en raíz. tallo y hojas; p. ej.: las hepáticas taloide (adj.).
rizoide, rhizoid (n), célula alargada, como en las hepá ticas, o filamento pluricelular (p.9), como en los musgos, que fija el gametofito (p .177) al sustrato. No es una auténtica raiz.
protonema
cápsula

hepática taloide

musgo acrocárpic

musgo pleurocárpico

pie ${ }^{\text {p }}$, foot (n), parte inferior de la generación esporofitica ($p .171$) de una briofita (\uparrow), que permanece in mersa en el arquegonio (p. 177)
cápsula, capsule (n). (1) parte final de la generación esporofitica (p. 177) de las hepáticas o los musgos que cuando está madura contiene las esporas (p. 178); (2) fruto seco, como el de la amapola, for mado por dos o más carpelos (p. 179), que durante a dehiscencia (p. 185) se abre por numerosas hendiduras o poros (p. 120) para liberar las semillas
seta $^{\mathrm{p}}$, seta' (n), tallo de la cápsula (\uparrow)
columela, columella (n), tejido (p. 83) estéril centra dentro de la cápsula (\uparrow) de las hepáticas y de los musgos
caliptra, calyptra (n), estructura en forma de caperuza que cubre la cápsula (\uparrow) de los musgos hasta la madurez. Es un resto del arquegonio (p. 177)
opérculo ${ }^{\text {p }}$, operculum (n), tapa de la cápsula (\uparrow) de un musgo que se abre para mostrar los dientes de peristoma (\downarrow)
dientes del peristoma, peristome teeth, anillo de dien tes en el ápice de la cápsula (\uparrow) de los musgos que se abren y cierran como respuesta a niveles va riables de humedad: se abren cuando hay sequedad y se cierran en condiciones humedas
elater, elater (n). cuerpo en forma de huso contenido en la cápsula (\uparrow) de las hepáticas. Engrosamientos espirales cambian de forma al variar los niveles de humedad, haciendo que el elater expulse esporas (p. 178) de la cápsula
protonema, protonema (n), filamento (p. 181) ramificado que crece a partir de la espora (p. 178) de germinación de los musgos. Desarrolla yemas que crecen para convertirse en la generación gametofítica (p. 177) foliosa
parafisas

gemas en hepáticas taloides: reproducción vegetativa

gemas, gemmae (n. pl.), diminutos cuerpos de forma lenticular producidos por las hepáticas como medio de reproducción (p. 173) asexual.
ciátulo, gemmae cup, receptáculo o cuerpo cupuliforme situado en la superficie superior de la generación gametofítica (p. 177) de las hepáticas, que contiene las gemas (\uparrow).
Pteridofitos, Pteridophyta (n. pl.). división de las plantas (p.50) que incluye las Licopodiales (\downarrow), las Equisetales (\downarrow) y las Filicales (\downarrow). Las Pteridofitas tienen un sistema vascular (p.127) bien desarrollado. Están ampliamente distribuidas, especialmente en los trópicos, y viven en su mayoria en tierra firme Existe alternancia de generaciones (p.176) entre las Existe alternancia de generaciones (p. 176) entre las
fases de gametofito ($p .177$) y esporofito (p.177), en la que esta última es la más evidente cuando la planta se diferencia en raíces, tallos, hojas y rizomas (p. 174).
criptógamas vasculares, vascular cryptogams, nombre alternativo para las Pteridofitas (\uparrow), así llamadas porque existe un sistema vascular ($p .127$) desarrollado, pero no órganos de reproducción (p. 173) visibles, como en el caso de las angiospermas.
homóspora, homosporous (adj.), dicese de las plantas con un solo tipo de esporas (p. 178) que da lugar a una generación hermafrodita ($p .175$) de gametofitos (p.177). Se presenta en algunas Pteridofitas (\uparrow).
heteróspora, heterosporous (adj.), dicese de plantas con tipos distintos de esporas (p. 178) que da lugar a generaciones gametofíticas (p. 177) masculinas y femeninas, respectivamente. Se presenta en algunas Pteridofitas (\uparrow) y se cree que representa un avance evolutivo (p.208) hacia la producción de semillas.

elátero con engrosamientos elatero con engrosamiento
helicoidales en la pared helicoidales en la pared
celular

Plantas heterósporas la producción de microsporas el gametofito σ se
desarrolla dentro
microspora y se producen gametos ơ móviles

antera

microspora
(grano de polen joven)

angiosperma

estróbilo, strobilus (n), estructura reproductora (p. 173) de ciertos miembros de las Pteridofitas (\uparrow). Consiste en varios esporofilos dispuestos sobre un eje.
cono $=$ estróbilo (\uparrow)
Licopodiales, Lycopodiales (n. pl.). licopodios. División de las Pteridofitas (\uparrow). Son un grupo antiguo que incluso tuvo formas arbóreas. Pueden ser heterósporas y homósporas, y llevan multitud de hojitas densamente adosadas a tallos ramificados. Siempre se mantienen verdes
esporofilo, sporophull (n). hoja modificada que alberga un esporangio (p. 178)
Equisetales, Equisetales (n. pl.). equisetos. División de las Pteridofitas (\uparrow). Son un grupo antiguo que incluso tuvo formas arbóreas. Se caracterizan por tener verticilos (p .83) de pequeñas hojas dispuestas sobre tallos erectos con estróbilos (\uparrow) en los ápices. Son homósporas (\uparrow).
microfilo, microphyll (n), hojas típicas de las Licopodiales (\uparrow) y las Equisetales (\uparrow), que puede ser muy pequeña y tiene un sistema vascular (p.127) sencillo, comprendiendo un único vaso que discurre desde la base hasta el ápice.

fronde, frond (n). hoja grande y dividida, típica de las Filicales (\uparrow).
soro, sorus (n), órgano reproductor ($p .173$) formado por un grupo de esporangios (p. 178) que aparece en el envés de las hojas de las Filicales (\uparrow).
indusio, indusium (n), tapa de tejido (p.83) que cubre el soro (\uparrow).
anillo, annulus (n), arco o anillo de células en los esporangios ($p .178$) de las Filicales (\uparrow), que participan en la apertura del esporangio o en su secado para liberar las esporas (p. 178).
vernación circinada, circinate vernation (n). modo de desenrollarse los frondes (\uparrow) jóvenes de las Filicales (\uparrow).

esporangios de helechos

dicotiledóneas algunos ejemplos

Espermatofitas, Spermatophyta (n. pl.), plantas con semilla. División de las plantas (p.54) que incluye las Gimnospermas (\downarrow) y las Angiospermas (\downarrow). Están ampliamente distribuidas y son las plantas dominantes en tierra firme en la actualidad. El cuerpo está altamente organizado y se ha diferenciado en raiz, tallo y hojas, y existe también un sistema vascular (p.54) bien desarrollado. Son heterósporas (p.54), con una generación esporofítica (p. 177) dominante, que es la propia planta. El gametofito (p. 177) masculino es el grano de polen (p. 181), mientras que el gametofito femenino es el óvulo, que tras la fertilización (p. 175) se convierte en la sèmilla.

Gimnospermas, Gymnospermae (n. pl.), división de las Espermatofitas (\uparrow), que incluye los árboles y arbustos en los que las semillas están desnudas y no englobadas en un fruto. La mayoría tienen conos (p.55)

Angiospermas, Angiospermae (n. pl.), plantas con flor. División de las Espermatofitas (\uparrow) que incluye las plantas dominantes en tierra firme. Están muy diferenciadas y tienen microsporofilos (p.178) y me gasporofilos (p. 179), combinados en flores verdade ras, como estambres (p. 181) y carpelos (p. 179).
Dicotiledóneas, Dicotyledonae (n), clase de las Angiospermas (\uparrow) en la que las semillas tienen dos cotiledones (p. 168) u hojas germinales; las hojas tie nen venación reticulada, las partes florales suelen ser múltiplos de cuatro o cinco y el sistema radical incluye una raíz pivotante (p.81) ramificada. Un ejemplo de Dicotiledónea es el botón de oro.
compuesta

Monocotiledóneas, Monocotyledonae (n). clase de las Angiospermas (p. 57), en la que las semillas tienen un cotiledón (p. 168) u hoja germinal; las hojas suelen tener venación paralela y las partes florales suelen ser múltiplos de tres. Monocotiledóneas tipicas son las gramineas
efimera, ephemeral (adj.). dícese de una planta en la que el ciclo completo desde la germinación (p. 168) a la producción de semillas y la muerte es muy corto. hasta el punto que pueden producirse varias generaciones de la planta en un mismo año
anual, annual (adj.), dícese de una planta que completa todo el ciclo vital desde la germinación (p. 168) de las semillas hasta la producción de la siguiente cosecha de semillas, seguido de la muerte de la planta dentro de un solo año
bienal, biennal (adj.), dícese de la planta que completa todo su ciclo vital, desde la germinación (p. 168) de las semillas hasta la producción de la siguiente generación de semillas, seguido de la muerte de la planta en el curso de dos años. Durante el primer año, la planta produce follaje y realiza la fotosíntesis (p.93) para producir una reserva de energía destinada a las actividades reproductoras ($p .173$) del segundo año.
perenne, perennial (adj.), dícese de una planta que vive un cierto número de años y que puede o no reproducirse (p . 173) dentro del primer año.

plantas anuales

dos tipos de árboles

caducifolia, deciduous (adj.), dicese de una planta que pierde sus hojas periódicamente según las esta ciones, de modo que la pérdida de agua por transpi ración ($p .120$) se reduce durante los períodos de tiempo muy seco o frío, cuando el agua escasea
perennifolia, evergreen (adj.), dicese de una planta que tiene hojas durante todo el año y que tiene adaptaciones, tales como una cutícula (p. 83) co rreosa u hojas aciculares, como en las gimnospermas (0.57), coníferas, para reducir las pérdidas de agua.

herbácea, herbaceous (adj.), dícese de una planta perenne en la que el follaje muere cada año, aunque la planta sobrevive, como, p. ej., un bulbo (p. 174), un cormo (p .174) o un tubérculo (p .174). Las plantas herbáceas no tienen madera en sus tallos ni raices.
árbol, tree (n), planta perenne (\uparrow) leñosa, que suele alcanzar una altura superior a 4 ó 6 metros, y que tiene un único tallo, que se ramifica a una cierta altura sobre el nivel del suelo
retoño, sapling (n), árbol joven.
arbusto, shrub (n), planta perenne (\uparrow) leñosa, más pequeña que un árbol, y que se ramifica muy cerca de la superficie del suelo.
trepadora, climber (n), planta que, aunque está enraizada en el suelo, utiliza a otras plantas como soporte. Las trepadoras emplean largos zarcilios enroscados, apéndices suctores o raices adventicias (p. 81) para sujetarse sobre otras plantas, y a veces se enroscan alrededor de sus tallos
follaje, foliage (n), conjunto de las hojas de una planta foliar (adj.)

zoología, zoology (n), estudio o ciencia de los anima les o de la vida animal.
Metazoos, Metazoa (n), término utilizado para describir a todos los animales verdaderamente pluricelulares (p.9), en contraposición a los que pertenecen a los Protozoos (p. 44).
Celentéreos, Coelenterata (n), tipo o filum de inverte brados (p. 75) pluricelulares (p. 9) acuáticos, y por lo general marinos, que incluye a los corales (\downarrow) y las medusas. El cuerpo tiene simetría (\downarrow) radial y consiste en una única cavidad corporal que se abre al exterior mediante una boca que está rodeada de un anillo de tentáculos ($p .71$), que pueden contener células urticantes o nematoblastos, y que se usan para atrapar las presas o como defensa. La pared del cuerpo consiste en un endodermo (p. 166) y un ectodermo (p. 166), separados por una mesoglea gelatinosa. La reproducción (p. 173) tiene lugar sexualmente y asexualmente por gemación (p. 173).
grado tisular, tissue grade, estado de organización de las células animales en diferentes tipos de tejido (p. 83) para diferentes funciones, tales como tejido muscular (p. 143) y tejido nervioso (p. 91), que conmuscular ($p .143$) y tejido nervioso ($p .91$), que con-
duce a una mayor coordinación de actividades, tales duce a una mayor coordinacion de activid
como respuesta y locomoción (p. 143).
simétrico, symmetrical (adj.), dicese de estructuras cuyas partes están dispuestas, igual y regularmente, a ambos lados de una línea o plano (simetría bilateral) (p.62) o alrededor de un punto central (simetría ral) (p. 62$) 0$
radial) (\downarrow).
asimétrico, asymmetrical (adj.), no simétrico (\uparrow).
simetría radial, radial symmetry, condición en la que la forma de un organismo es tal que sus estructuras irradian de un punto central, de modo que si se hace un corte transversal a través de cualquier diámetro, una mitad será imagen especular de la otra.
diploblástico, diploblastic (adj.), dicese de un animal cuya pared corporal está formada por dos capas, un endodermo (p. 166) y un ectodermo (p. 166), separados por una mesoglea gelatinosa.
arquenteron, enteron (n), cavidad corporal en forma de saco que funciona como un tracto digestivo (p.98) o intestino (p.98)
larva plánula, planula larva, dícese de la pequeña larva (p. 165) ciliada (p. 12) de un miembro de los celentéreos (\uparrow), que resulta de la reproducción sexual (p. 173) y que es nadadora antes de encontrar un lugar adecuado donde fijarse y convertirse en un pólipo (\downarrow).

Platelmintos, Platyhelminthes (n), filum o tipo de ani males invertebrados (p. 75) pluricelulares (p.9) que incluye los gusanos planos. El cuerpo tiene simetría bilateral (\downarrow), presenta forma de gusano y consta de una única abertura del intestino que a menudo es ramificado. No existe celoma (p. 167) ni sistema vasramificado. No existe celoma (p. 167). La pared del cuerpo consiste en un cular (p. 127). La pared del cuerpo consiste en un ectodermo (p. 166), un mesodermo (p. 167) y un en-
dodermo (p. 166). Suelen ser hermafroditas (p. 175).
gusanos planos, flatworm (n. pl.), cualesquiera de los miembros de los Platelmintos (\uparrow), que tienen forma aplanada desde arriba hacia abajo, de modo que el oxígeno usado en la respiración (p.112) se difunde por todas las partes del cuerpo. Existen tres grupos que incluyen los verdaderos gusanos planos, en su mayoría marinos, las tenias parásitas (p.92) y los trematodos parásitos.

Planaria corte transversal del cuerpo
 úsculos longitudinales ectodermo
cilios
triblástico, triploblastic (adj.), dicese de aquellos animales, tales como los Platelmintos (\uparrow), en los que la pared del cuerpo consta de tres capas: el ectodermo (p. 166), el mesodermo (p. 167), que se forma a partir de las celulas que han emigrado desde la capa superficial, y el endodermo (p. 166)
simetría bilateral, bilateral symmetry, condición en la que una mitad del organismo, desde un corte hecho a lo largo de su eje longitudinal, es una imagen especular de la otra mitad
acelomado, acoelomate (adj.), dícese de aquellos animales sin celoma (p. 167), como, p. ej., los Platelmintos (\uparrow).
célula flamigera, flame cell, cualesquiera de las numerosas células cupuliformes presentes en muchos animales, como, p. ej., en los Platermintos (\uparrow), que, con el batido de sus cilios (p. 12), llevan los productos líquidos de desecho hasta su cavidad y desde allí al exterior.
ventosa, sucker (n), órgano de fijación; p. ej.: en los Platelmintos (\uparrow) parásitos (p.92), es una adaptación de la faringe (p.99) que se usa para fijar el organismo al huésped (p. 110).

Turbelarios, Turbellaria (n), clase de los Platelmintos (\uparrow) que incluye gusanos planos (\uparrow) libres, por lo general acuáticos, con ectodermo (p.166) ciliado (p. 12)

Planaria, Planaria (n), género (p. 40) de Turbelarios (\uparrow) que incluye formas de aguas dulces que tienen nu merosos cilios (p. 12) en su cara inferior como ayuda para la locomoción (p . 143), la respiración (p . 112) y la conducción de las partículas alimenticias hacia la boca.
Trematodos, Trematoda (n), clase de los Platelmintos \uparrow) que incluye parásitos internos (p.110), con un ciclo vital complejo que incluye más de un huésped (p. 110), por lo general un animal vertebrado (p.74) y otro invertebrado (p.75). Tienen ventosas (\uparrow), un intestino ramificado (p.98) y una cutícula engrosada (p. 145) para resistir la digestión (p.98) por parte del huésped.
bilharziosis, bilharzia (n), enfermedad que afecta a los seres humanos, especialmente en África, causada por un trematodo que infecta el hígado y que pasa parte de su vida en caracoles dulceacuicolas, que son devorados por un pez y éste consumido por el hombre. Penetra en el hígado (p 103), procedente del intestino (p.98), por el conducto biliar (p. 101).

Cestodos, Cestoda (n), clase de los Platelmintos (p. 62), que incluye los parásitos internos (p. 110) las tenias, que tienen un ciclo vital complejo que comprende más de un huésped (p. 110), por lo general vertebrados (p. 74). Van provistos de ventosas y de fuertes ganchos situados en la cabeza para sujetarse a las paredes del intestino (p.98) del huésped. El cuerpo está dividido en secciones y tiene una cutícula (p .145) recia para evitar ser digeridos por el huésped.
Nematodos, Nematoda (n), filum o tipo de animales invertebrados ($p .75$) pluricelulares ($p .9$) que incluye los gusanos redondos (\downarrow). Este filum incluye formas terrestres (p.219), acuáticas y parásitas (p.92), que no tienen cilios (p.12) y llevan un canal digestivo (p.98) con una boca y un ano (p. 103)
gusanos redondos, roundworms ($n . p l$.), cualesquiera de los miembros de los Nematodos (\uparrow) que tienen un típico cuerpo redondeado y sin segmentar que se afila por ambos extremos. Se desplazan dando coletazos con todo el cuerpo. Los sexos suelen estar separados y las hembras ponen un gran número de huevos. Son capaces de resistir condiciones adversas secretando (p. 106) un revestimiento protector alrededor del cuerpo.
seudocele, pseudocoel (n), cavidad corporal Ilena de líquido situada entre el tracto digestivo (p .98) y los otros órganos de los guasnos redondos (\uparrow).
anélidos, Annelida (n), filum o tipo de invertebrados (p. 75) pluricelulares (p.9), por lo general libres y típicamente marinos, que incluye a los "verdaderos" gusanos segmentados (\downarrow). Tienen un siste ma nervioso central (p. 149), una culicula delgada (p. 145) y quetas (\downarrow) en forma de cerdas sobre el cuerpo.

gusano segmentado, segmented worm, cualesquiera de los miembros de los Anélidos (\uparrow). Tienen un cuerpo dividido en segmentos anulares. La digestión (p.98) tiene lugar en un intestino (p.98) tubular simple, que va desde la boca hasta la parte frontal de ano (p. 103), en el extremo posterior. Entre la pared del cuerpo y el intestino hay un celoma (p. 167) Ileno de líquido Son hermafroditas (p. 175)
nefridio, nephridium (n), órgano usado para la excre ción ($p .134$) en algunos invertebrados ($p .75$); p. ej. los Anélidos (\uparrow). Consiste en un tubo que se abre a exterior por un extremo y por el otro a células flamí geras (p. 62) o al celoma (p. 167)
queta, chaeta (n), cualesquiera de las estructuras en forma de cerda constituidas por quitina ($p .49$) y que se disponen segmentalmente a lo largo del exterio del cuerpo de los Anélidos (\uparrow). Pueden ayudar en la locomoción (p. 143) y, p. ej., a las lombrices (p. 66) a sujetarse al suelo en el que viven
uetas corte transversa de la pared del cuerpo de una lombriz de tierra

seta ${ }^{\mathbf{a}}$, seta $(n)=$ queta (\uparrow).
ganglio cerebral, cerebral ganglion, uno de los pares de cordones de tejido nervioso (p. 91) que discurren ventralmente y forman parte del sistema nervioso central (p. 149) y a los cuales se conectan segmentalmente los ganglios (p. 155)
Polipquetos, Polychaeta (n), clase de Anélidos (\uparrow) marinos que incluye, p. ej., los nereis, que tienen muchas quetas (\uparrow). Los sexus en estos animales sueen estar separados.
parapodio, parapodium (n), en los miembros de los poliquetos (\uparrow), cualesquiera de las numerosas prolongaciones de la pared del cuerpo en la cual se encuentran las quetas (\uparrow)
larva trocófora, trochosphere larva, larva (p. 165) de los Anélidos (p.64) y algunos otros grupos de inver tebrados (p. 75) que pueden estar relacionados por evolución (p. 208). Es libre, planctónica (p. 227) y está cubierta de cilios (p. 12), especialmente alrededor de la boca, que conduce al tracto digestivo (p. 98) y el ano (p. 103)

Hirudíneos, Hirudinea (n), clase de anélidos (p. 64) ectoparásitos (p. 110) de agua dulce que incluye las sanguijuelas (\downarrow). No tienen quetas (p.65) ni parapodios (p .65) y son hermafroditas (p .125)
sanguijuela, leech (n), cualesquiera de los hirudíneos (\uparrow) que son aplanados y tienen una pequeña ventosa (p.62) en el extremo anterior y otra, más grande y visible, en el posterior. Algunas son carnívoras (p .109), pero la mayoría son parásitas (p .92), alimentándose de la sangre de sus huéspedes (p. 110).

Oligoquetos, Oligochaeta (n), clase de Anélidos (p.64), en su mayoría terrestres (p.219) y de aguas dulces, que incluye las lombrices de tierra (\downarrow). Tienen pocas quetas ($p .65$), carecen de parapodios (p. 65) y son hermafroditas (p. 175)
lombriz de tierra, earthworm (n), cualesquiera de los miembros de los Óligoquetos (\uparrow) que comprende el género (p.40) Lumbricus. Viven enterradas en el suelo y digieren (p.98) cualquier materia orgánica que haya en él y son importantes para mejorar la estructura de los suelos. Tienen pocas quetas (p. 65) y segregan mucosidad (p.99) de su piel.
clitelo, clitellum (n), engrosamiento en forma de silla de montar de la epidermis (p. 131) de las lombrices de tierra (\uparrow), que une a los individuos durante la cópula (p. 191) y segrega después el capullo (\downarrow).
capullo, cocoon (n), cubierta protectora; p. ej.: para los huevos de las lombrices de tierra (\uparrow), que es secretada (p. 106) por el clitelo (\uparrow)

clitelo

cópula entre lombrices de tierra
partes de un insecto

Artrópodos, Arthropoda (n), filum o tipo de animales invertebrados (p.75) pluricelulares (p.9) que ocupan medios aéreos, terrestres (p. 219), dulceacuícolas y marinos, y que constituyen aproximadamente el 80 por 100 de los animales conocidos. Su cuerpo está muy organizado: una cabeza, segmentos del extremo anterior conteniendo los órganos de alimentación, muy sensibles; así como el cerebro (p. 155); un tórax: segmentos entre la cabeza y el abdomen que llevan los apéndices articulados $(\downarrow) y$, cuando existen, las alas, y un abdomen, segmentos de la parte posterior. Tienen simetría bilateral (p.62) y van protegidos por un exosqueleto (p .145) rigido que está segmentado para facilitar la movilidad. Suelen tener ojos compuestos. El crecimiento se produce por ecdisis (p. 165). Cada segmento suele llevar un par de apéndices articulados. El celoma (p. 167) es pequeño y la cavidad principal del cuerpo es un hemocele (p. 68), que contiene un tubo capaz de contraerse y funcionar como un corazón (p. 124). Existe un cordón nervioso ($p .65$) situado debajo del intestino (p. 98) y conectado a los ganglios (p. 155) pares de cada segmento. Los miembros más conocidos de este filum son los insectos (p.69) y las arañas (p. 70).
segmentación metamérica, metameric segmentation, condición en la que el cuerpo de un animal, especialmente ciertos invertebrados (p. 75), tales como Anélidos (p. 64) y Artrópodos (\uparrow), está dividido en una serie de unidades claramente, definibles, que son esencialmente similares entre sí y repiten sus juegos de vasos sanguíneos (p. 127), órganos de excreción (p.134) y respiración (p. 112), nervios (p. 149), etc. En los artrópodos, la similitud entre las unidades se reduce especialmente en el extremo ce fálico.
apéndice, appendage (n), cualquier proyección o protuberancia relativamente grande que surge del cuerpo principal de un organismo
apéndice articulado, jointed appendage, cualesquiera de las proyecciones del cuerpo de un Artrópodo (\uparrow) que está dividida en un número de segmentos, siete en los insectos (p.69), y que está fijada en gozne entre los segmentos para permitir la articulacion en planos distintos. Los apéndices están modificados para diferentes funciones; p. ej. locomoción (p. 143), alimentación, reproducción (p. 173) y respiración (p.112)
antena, antenna (n), uno de los pares de apendices articulados (p.67) filiformes y dotados de gran movilidad, situados en la cabeza de los artrópodos (p. 67), y que se usan principalmente para palpar y oler, aunque, en algunos miembros del grupo, pueden ayudar a la locomoción (p. 143)
hemocele, haemocoel (n), cavidad llena de sangre (p. 90) que forma la cavidad principal del cuerpo de los artrópodos (p. 67). El celoma (p. 167) está reducido a cavidades que rodean las gónadas (p.187), etc., mientras que el hemocele es esencialmente una parte ensanchada del sistema sanguíneo.

Crustáceos, Crustacea (n), clase de los Artrópodos (p.67) que incluye los cangrejos y las gambas, que son acuáticos, y las cochinillas, que son terrestres (p.219). El cuerpo está típicamente dividido en dos pares de antenas (\uparrow) y ojos compuestos, un tórax (p.115) y un abdomen (p.116). El exosqueleto (p. 145) puede estar endurecido por calcita $\left(\mathrm{CaCO}_{3}\right)$.
copépodo, copepod (n), uno de los miembros del grupo de pequeños crustáceos (\uparrow) acuáticos que forman una parte importante del plancton marino (p. 227). No tienen caparazón (\downarrow) ni ojos compuestos y su primer par de apéndices (p 67) de la cabeza están modificados para servir de aparato filtrador za estan modificados para servir de aparato filtrador (p. 108) en su alimentación, mientras que los seis
pares del tórax (p .115) se utilizan para la natación. pares del tórax (p .115) se utilizan para la
El abdomen (p .116) no tiene apéndices.
isópodo, isopod (n), uno de los miembros de los crustáceos (\uparrow) aplanados, terrestres (p. 219), dulceacuícolas, marinos y a menudo parásitos (p.92), que no tienen caparazon (\downarrow), como, p. ej., las cochinillas de la madera.
decápodo, decapod (n), uno de los miembros de los crustáceos (\uparrow) terrestres (p.219), dulceacuicolas y principalmente marinos; p. ej.: los cangrejos y las langostas. A menudo tienen un abdomen (p. 116) alargado que termina en una cola, que les permite escapar de los predadores ($p .220$) mediante una natación rápida hacia atrás. La cabeza y el tórax (p. 116) pueden estar fusionados y protegidos mediante un caparazón (\downarrow). Tienen cinco pares de apéndices articulados (p 67) en el tórax que usan en la locomoción y tres pares usados en la alimentación. Uno o dos de los pares de patas pueden llevar pinzas, que usan como defensa y en las luchas territoriales.

Crustáceos grupos principales

caparazón, caparace (n), porción endurecida y en forma de escudo del exosqueleto (p. 145) que protege el dorso y los lados de la cabeza y del tórax (p. 115) de algunos artropodos (p. 67), como p. ej los cangrejos.
cangrejo de río, crayfish (n), cualesquiera de los decápodos (\uparrow) dulceacuícolas relativamente pequenos, parecidos a las langostas y emparentados con ellas. Tiene un caparazón alargado y un abdomen (p. 116) flexible. El primero de los cinco pares de apéndices articulados (p. 67) del tórax (p. 116) está modificado y transformado en grandes pinzas, que usan para alimentarse y defenderse. Los otros cuatro pares se usan en la locomoción (p. 143)

Miriápodos, Myriapoda (n), clase de artrópodos (p.67) terrestres (p. 219) que incluye los ciempiés (\downarrow) y los milpiés (\downarrow), que tienen cuerpo alargado con muchos segmentos, cada uno de los cuales lleva uno o más pares de apéndices articulados (p.67). Tienen una cabeza diferenciada, que lleva antenas (\uparrow) y piezas bucales
de un insecto

quilópodo, chilopod (n), uno de los miriápodos (\uparrow) aplanados carnívoros (p. 109), que incluye los ciempiés (\downarrow), que tiene un par de patas en cada segmento, de los que el primer par contiene glándulas venenosas (p .87).
ciempiés, centipede (n), cualesquiera de los quilópo dos (\uparrow), pero especialmente los miembros del géne ro (p. 40). Lithobius, cuyos miembros viven debajo de las piedras
milpiés, millipede (n), cualesquiera de los miriápodos (\uparrow) redondeados y hervíboros (p. 109) que tienen cuatro segmentos simples en el extremo anterior del cuerpo y numerosos segmentos dobles, cada uno de ellos con dos pares de patas.

insectos, Insecta (n), la mayor, más diversa (p. 213) e importante clase de los artrópodos (p.67), entre los cuales la mayoría son terrestres (p. 219) o aéreos Los insectos incluyen la mayoría de los animales co nocidos con un millón de especies (p. 40) descritas y quizá otros treinta millones que no han sido identificados todavía. El cuerpo está dividido típicamente en una cabeza con un par de antenas (\uparrow), ojos sim ples y compuestos y piezas bucales adaptadas para diferentes métodos de alimentación; un tórax (p. 115) con tres pares de patas y, generalmente dos pares de alas para volar, y un abdomen (p. 116) sin patas. Tienen un exosqueleto ($p .145$) impermeable al agua y medios muy eficaces de respiración (p. 112) a través de tráqueas (p. 115).
metamorfosis, metamorphosis (n), procedimiento me-p. ej. ciclo vital de un mosquito diante el que, bajo el control de hormonas (p. 130) algunos animales, p. ej., insectos (p.69), cambian rápidamente de forma, desde la larva (p.165) al adulto, con una destrucción considerable de tejido (p. 83) larvario
probóscide, proboscis (n), prolongación de las piezas bucales de un insecto ($p .69$) que se usa para la alimentación.
comisura, commissure (n), cordón nervioso (p.65) que conecta los ganglios (p. 155) segmentales en los artrópodos (p. 67).
Arácnidos, Arachnida (n), clase de artrópodos (p. 67), generalmente terrestres (p. 219), que incluye las arañas (\downarrow), los escorpiones y los pseudoescorpiones. El cuerpo está dividido en dos regiones principales, el prosoma (\downarrow) y el opistosoma (\downarrow), y lleva cuatro pares de patas marchadoras, un par de queliceros y pares de patas marchadoras, un par de queliceros y
un par de pedipalpos (\downarrow). La cabeza tiene ojos simun par de pedipalpos (\downarrow). La cabeza tiene ojos sim-
ples y carece de antenas (p. 68). La respiración (p. 112) se realiza por medio de pulmones laminares (\downarrow).
prosoma, prosoma (n), región anterior del cuerpo de un arácnido (\uparrow) que está formada por la cabeza y el tórax (p. 115) fusionados.
opistosoma, opisthosoma (n), región posterior o abdomen ($p .116$) de un arácnido (\uparrow).
araña, spider (n), arácnido (\uparrow) en el que el prosoma (\uparrow) y el opistosoma (\uparrow) están separados por una estrecha cintura que tiene hileras (\downarrow).
pedipalpos, pedipalps (n. pl.), segundo par de apéndices articulados (p.67) del prosoma (\uparrow) de los arácnidos (\uparrow). Pueden usarse para sujetar la presa, adaptarse a la función de antenas (p.68) o utilizarse durante la cópula (p. 191).
pulmón laminar, book lung, órgano de respiración (p. 112), aunque no el único, de los arácnidos (\uparrow). Está compuesto de numerosas capas delgadas de tejido (p. 83), que recuerdan las hojas de un libro, a través de las cuales circula sangre (p .90) y que absorben oxígeno (p.81).
tela de araña, web (n), material sedoso fino tejido por las arañas (\uparrow), en una gran variedad de formas, que se usa para capturar presas; p. ej.: moscas, como si fuera una red.
hilera, spinneret (n), par de apéndices ($p .67$) situado en el opistosoma (\uparrow) de las arañas (\uparrow) y que segrega (p. 106) un líquido que se endurece, formando seda, para producir las telas de araña (\uparrow), rodear el capullo (p.66) o atar a la presa

Gasterópodos p. ej. caracol

Moluscos, Mollusca (n), filum o tipo de animales pluricelulares (p. 9) invertebrados (p. 75) de simetría bilateral (p.62) que ocupan medios (p.218) terrestres (p.219), dulceacuícolas y marinos, y que incluye las almejas, las babosas y los caracoles. Tienen un cuerpo blando no segmentado que está dividido en una región cefálica, una masa visceral (\downarrow) y un pie (\downarrow). En algunos grupos de moluscos, el manto (\downarrow) segrega (p. 106) una concha dura. El celoma (p. 167) está reducido y existe un hemocele (p.68)
masa visceral, visceral hump, masa blanda de tejido (p. 83) que constituye la porción principal de un molusco (\uparrow) y que contiene el sistema digestivo (p. 98).
pie ${ }^{\text {a }}$, foot (n), desarrollo muscular (p. 143) blando de la parte inferior del cuerpo de un molusco (\uparrow), que se utiliza para la locomoción (p. 143).
manto, mantle (n), pliegue de la pared del cuerpo que cubre la masa visceral (\uparrow). En algunos moluscos (\uparrow) segrega (p. 106) una concha compuesta de carbonato cálcico, mientras que en otros está plegada para formar una cavidad que engloba los órganos de la respiración (p.112).
rádula, radula (n), tira con aspecto de lengua presente en la mayoría de los moluscos (\uparrow), que está cubierta de dientes córneos y que usan para arrascar partículas de alimento. Según se va desgastando es reemplazada.
tentáculo, tentacle (n), apéndice flexible (p. 67). En los cefalópodos (p.72) existen normalmente ocho o diez, que se extienden desde el pie (\uparrow), que va incorporado a la cabeza. Cada tentáculo lleva numerosas ventosas que se usan como órganos sensoriales, para defensa y para sujetar las presas.
larva trocófora, trochophore larva, larva (p. 165) ciliada (p.12) libre de los moluscos (\uparrow) acuáticos.

Gasterópodos, Gasteropoda (n), clase de moluscos $(\uparrow$) terrestres (p. 219), dulceacuícolas y marinos, que incluye la caracola marina, las babosas y los caracoles, en los que la masa visceral (\uparrow) está espiralizada. Esta torsión (\downarrow) de la masa visceral se refleja en las volutas de la concha. Existe un pie muscular (\uparrow) que se usa en la locomoción (p.143); los ojos (\uparrow) que se usa en la locomoción (p.143); los ojos
están situados sobre tentáculos (\uparrow) y los gasterópoestán situados sobre tentáculos (\uparrow) y los ga
dos se alimentan usando una rádula (\uparrow).
torsión, torsion (n), acción o condición de doblarse en espiral.
caracol, snail (n), miembro terrestre (p. 219) de los Gasterópodos (p . 71) que no tiene branquias (p.113), pero en el que la cavidad del manto ($p .71$) funciona como un pulmón (p.115). Se incluye también a las babosas, que carecen de la concha de los verdaderos caracoles
Bivalvos, Bivalvia (n), clase de moluscos (p. 71) marinos y dulceacuícolas aplanados, en los que el manto ($p .71$) se presenta en dos partes y segrega (p. 106) una concha formada por dos valvas articuladas, que pueden ser juntadas mediante poderosos músculos (p. 143). La cabeza está muy poco desarrollada y se alimentan por filtración (p. 108). Algunos bivalvos se entierran en la arena, el lodo, las rocas o la madera; otros se fijan al sustrato mediante vigorosos filamentos y otros nadan libremente, propulsándose hacia atrás, abriendo y cerrando las valvas.
mejillón, mussel (n), nombre de varias especies de un grupo de típicos miembros de los bivalvos (\uparrow), que incluye formas dulceacuicolas y marinas, y que tiene poderosos músculos (p . 143) para cerrar herméticamente sus valvas como protección. Se fijan con fuerza al sustrato, p. ej., rocas, mediante filamentos muy fuertes.
sifón, siphon (n), tubo, p. ej., uno de los dos tubos que sobresalen por el extremo posterior entre las valvas abiertas de un molusco (p.71) bivalvo (\uparrow) y que forma parte del sistema que hace circular agua por la cavidad del manto (p. 71) con fines de alimentación y respiración (p.112).
Cefalópodos, Cephalopoda (n), clase de moluscos ($p .71$) marinos, con una cabeza bien desarrollada, que contiene un complejo cerebro (p. 155) y ojos. La cabeza está rodeada de un anillo de tentáculos (p. 71) cubiertos de ventosas, que es una modificación del pie (p.71). Existe un sifón (\uparrow) muscular para la respiración (p. 112), y la concha está muy reducida, y suele ser interna.
pulpo, octopus (n), miembro de los cefalópodos (\uparrow) con ocho tentáculos en forma de brazos y un cuerpo ovalado blando.

Equinodermos

mind (n), tipo o filum de animales invertebrados (p.75), pluricelulares (p.9), de simetría radial (p .60) y por lo general de cinco radios (\downarrow), que ocupan medios marinos (p.218) y que incluyen las estrellas de mar (\downarrow) y los erizos de mar (p. 74). Carecen de cabeza y su sistema nervioso (p. 149) es muy simple. Parte del celoma (p. 167) está adaptado para convertirse en un sistema acuífero (\downarrow), que es único de este grupo, y que se conecta con los pies ambulacrales (\downarrow), usados en la locomoción (p. 143) y la alimentación. Tienen un esqueleto interno (p. 143) de placas compuestas de calcita $\left(\mathrm{CaCO}_{3}\right)$ y la mayoría de ellos tienen espinas.
equinodermos espinosos, spiny-skinned animal, grupo de Equinodermos (\uparrow) en los que el ectodermo (p. 166) está cubierto de espinas calcáreas $\left(\mathrm{CaCO}_{3}\right)$, móviles y afiladas, que se ponen en contacto con los huesecillos calcáreos (\downarrow).
simetría radial de cinco radios, five-rayed radial symmetry, simetría radial ($p .60$), que es típica de los Equinodermos (\uparrow), en los que existen cinco ejes de simetría.
pie ambulacral, tube foot, cualesquiera de los apéndices (p.67) tubulares, huecos y móviles, que están en contacto con el sistema acuífero (\downarrow) y pueden acabar en ventosas. Se usan para la locomoción (p. 143) y la alimentación, y en los lirios de mar, que son sedentarios, tienen cilios ($p .12$) y se usan para recoger partículas alimenticias.
sistema acuífero, water vascular system, sistema vascular (p. 127) que es propio de los Equinodermos (\uparrow) y consta de una serie de canales con agua de mar, que bajo presión accionan los pies ambulacrales (\uparrow).
madreporito, madreporite (n), placa cribada, situada en la superficie superior de los Equinodermos (\uparrow), que es la abertura del sistema acuífero (\uparrow) hacia el exterior.
huesecillo calcáreo, calcareous ossicle, cualesquiera de las placas con aspecto de hueso formadas por carbonato cálcico, que constituyen el esqueleto (p.143) interno de los Equinodermos (\uparrow).
estrella de mar, starfish (n), miembro del grupo de Equinodermos (\uparrow) que tienen típicamente cinco brazos flexibles que parten del disco central, que contiene los órganos principales y en su cara inferior la boca. Los brazos tienen pies ambulacrales (\uparrow) en la cara inferior, que se usan para la locomoción (p. 143) y para la captura de presas. Suelen vivir en la zona litoral (p. 219).
estructura interna
de un erizo de mar
madreporito
erizo de mar, sea urchin, miembro del grupo de equinodermos (p.73), por lo general globulares, acorazonados o en forma de disco y en los que los huesecillos calcáreos ($p .73$) se fusionan para formar un esqueleto (p.143) rígido en forma de caparazón, al que van unidas espinas que se mueven gracias al sistema acuífero (p. 73). Suelen vivir en el fondo del mar, o enterrados en él, alimentándose de plantas y residuos mediante la boca que tienen en la cara inferior.

Cordados, Chordata (n), tipo o filum de animales pluricelulares (p.9), vertebrados (\downarrow) e invertebrados (\downarrow), de simetría bilateral (p.60), que incluye los seres humanos y otros mamíferos, y que se caracteriza por la posesion de una notocorda (p.167) rígida y con aspecto de varilla durante alguna fase de su ciclo vital.
cráneo, cranium (n), parte del esqueleto (p. 143) compuesta de tejido oseo, de un miembro de los Cordados (\uparrow) vertebrados (\downarrow) y que contiene el cerebro (p. 155).
columna vertebral, vertebral column, parte del esqueleto (p. 143) de los miembros vertebrados (\downarrow) de los Cordados (\uparrow), que se sitúa a lo largo de la línea dorsal del cuerpo, desde el craneo (\uparrow) a la cola (\downarrow), y que esta formada por una cadena unida de pequeños huesos o cartílagos (p. 90), las vértebras. Es flexible y permite el movimiento y la locomoción (p. 143). Sustituye al notocordio (p. 167) y es una columna hueca que contiene la médula espinal (p. 154). Se conoce también por espina.
hendidura visceral, visceral cleft, cada una de las aberturas pares de la faringe (p.99) que se presenta en alguna fase del ciclo vital de los miembros de los Cordados (\uparrow) y que persiste en las especies (p. 40) acuáticas. Conducen del exterior a las branquias (p. 112) y están relacionadas con la alimentación por filtración (p. 108) y el intercambio de gases (p.112), ya que el agua es bombeada a través suyo
vertebrado, vertebrate (n), animal con una columna vertebral (\uparrow)

peces cartilaginosos
p. ej. tiburón
invertebrado, invertebrate (n), animal sin columna vertebral (\uparrow).
cola, tail (n), prolongación de la columna vertebral (\uparrow) que continúa por detrás del ano (p.103) en la mayo ría de los miembros vertebrados (\uparrow) de los Cordados (\uparrow). Puede usarse para la locomoción (p. 143) para el equilibrio y para maniobrabilidad (\downarrow), o como una quinta extremidad.
maniobrabilidad, manoeuvrability (n), capacidad de realizar cambios controlados de movimiento y dirección.
Gnatóstomos, Gnathostomata (n). subfilum o superclase de los Cordados (\uparrow)) vertebrados (\uparrow) que se caracterizan por la posesión de una mandíbula (p. 105). La notocorda (p. 167) no se ha mantenido en el curso de su evolución

Agnatos, Agnatha (n), su ilum o superclase de Cordados (\uparrow) vertebrados (\uparrow) que se caracterizan por no tener mandíbula. Son acuáticos y primitivos (p.212).

Peces, Pisces (n), clase de Cordados (\uparrow). Los peces son animales marinos y dulceacuícolas de cuerpo hidrodinámico, cubierto por lo general de escamas (p.76). Tienen una cola (\uparrow) fuerte en forma de aleta (\downarrow) que utilizan para impulsarse por el agua, mientras que emplean sus pares de aletas pélvicas (\downarrow) y pectorales (\downarrow) para conseguir estabilidad y maniobrabilidad (\uparrow). El intercambio de gases (p. 112) tiene lugar en las branquias (p.113) y son animales exotérmicos (p.130)
aleta, fin (n), órgano externo, membranoso y aplanado del cuerpo de los peces, que suele presentarse en pares. Se utiliza para la dirección, la estabilidad y la propulsión.
pectoral, pectoral (adj.), referente al pecho; p. ej.: las aletas pectorales (\uparrow) de un pez van unidas a los hombros y se utilizan para dirigir hacia arriba o hacia abajo en el agua, así como para contrarrestar el cabeceo y balanceo
pélvico, pelvic (adj.), referente a la cintura pélvica (p. 147); p. ej.: las aletas pélvicas (\uparrow) de un pez van unidas a la cintura pélvica, o pelviana, y se utilizan para dirigir hacia arriba o hacia abajo en el agua, así como para contrarrestar el vabeceo y el balanceo.
dorsal, dorsal (adj.), cerca de o hacia el dorso de un animal; es decir, la parte que normalmente va dirigida hacia arriba (o hacia atrás en el hombre).
ventral, ventral (adj.), cerca de o hacia la parte de un animal que normalmente está dirigida hacia abajo (o hacia adelante en el hombre)
escama, scale (n), cualesquiera de las numerosas pla cas córneas u óseas formadas en la piel de un pez, y que pueden situarse por encima o por debajo de la piel: Se superponen para formar una cubierta hidrodinámica y protectora del pez. Bajo el microscopio (p.9) puede verse que tienen una estructura anular que representa la velocidad de crecimiento del animal, y que puede usarse para fines de datación.
Condrictios, Chondrichthyes (n), subclase de los peces ($p .75$) totalmente marinos, y que incluye los tiburones y las rayas. Se caracterizan por tener un esqueleto interno ($p .143$) hecho de cartílago ($p .90$) y, por consiguiente, se les llama también peces cartilaginosos. No tienen vejiga natatoria (\downarrow), por lo que se hunden si dejan de nadar
pez cartilaginoso $=$ Condrictios (\uparrow)
Osteictios, Osteichthyes (n), subclase de peces (p. 75) que incluye formas dulceacuícolas y marinas Se caracterizan por tener un esqueleto interno (p. 143) y escamas (\uparrow) óseos, por lo que se les llama también peces óseos. Estos peces tienen vejiga natatoria (\downarrow).
peces óseos, bony fish $=$ Osteictios (\uparrow).
peces teleósteos, teleost fish, grupo principal de los Osteictios (\uparrow). Son peces en los que el cuerpo tiende a aplanarse lateralmente y que tienen una vejiga natatoria (\downarrow) para ajustar su capacidad de flotación Sus aletas (p.75) están compuestas de una pie membranosa delgada, sujeta sobre radios óseos Las mandíbulas (p. 105) están acortadas, de modo que pueden abrir ampliamente la boca, y las hendiduras branquiales (p.74) están protegidas mediante un opérculo (p.113) cobertor. Las escamas (\uparrow) son delgadas, óseas y redondeadas. Existe una amplia variedad de tipos de peces teleosteos y ocupan la mayoría de los medios (p.218) acuáticos
características externas
de un pez óseo
bolsas de sirena

aleta caudal aleta caudal homocerc

Anfibios

p. ej. salamandra

ejiga natatoria, swim bladder, saco situado dentro de la cavidad abdominal (p 116) de los peces óseos $\uparrow)$. Contiene una mezcla de oxígeno y nitrógeno, y el primero puede ser bombeado a la veiiga procedente de la sangre para aumentar la flotabilidad (\downarrow) del pez, o viceversa, de modo que el animal puede controlar su profundidad. Funciona también como un detector y productor de sonidos, y en los peces pul monados permite la respiración ($p .112$) fuera de agua.
flotabilidad, buoyancy (n), capacidad de flotar en un líquido
bolsa de sirena, mermaid's purse, cápsula protectora que engloba al pequeño número de huevos produci dos por los peces cartilaginosos (\uparrow)
homocerca, homocercal (adj.), dícese de la cola (p. 75), como, p. ej., la de los peces teleósteos (\uparrow) que tiene forma simétrica (p.60)
heterocerca, heterocercal (adj.), dícese de la cola (p. 75), como, p. ej., la de los peces cartilaginosos (\uparrow), que tiene forma asimétrica ($p .60$), de modo que el lóbulo inferior es menor que el superior, para pro porcionar así al animal un empuje adicional
tetrápodo, tetrapod (n), cualesquiera de los miembros vertebrados ($p .74$) de los Cordados (p. 74), como, p ej., los mamíferos ($p .80$), que tienen dos pares de extremidades para apoyo, locomoción (p. 143), etc.
pentadáctilo, pentadactyl (adj.), dícese del miembro de un tetrápodo (\uparrow) que termina en cinco dígitos aunque éstos pueden reducirse o fusionarse como adaptaciones a distintos modos de vida.

Anfibios, Amphibia (n), clase de primitivos cơvdados (p. 75) tetrápodos (\uparrow), tales como las ranas y los sapos, entre los cuales la fertilización (p. 175) es ex terna, de modo que tienen que regresar al agua para reproducirse. Sus formas larvarias (p .165) son acuá ticas y tienen branquias (p. 113), pero la mayoría de os adultos son capaces de sobrevivir en condiciones húmedas en tierra firme, ya que tienen un pulmón (p. 115) y son capaces de aspirar aire, respirando (p . 112) principalmente a través de la delgada y porosa piel. Debido a la delgadez de la piel, los flui dos corporales se pierden con facilidad. Lo mismo que los peces, son exotermos (p. 130)
salamandras, salamanders (n. pl.), miembros del or den de los Urodelos, Anfibios (\uparrow), que incluyen es pecies con cola.

los cuatro grupos principales

 aire y poseen un pulmón (p. 115) verdadero. Su piel es escamosa, por lo que resiste las pérdidas de fluidos corporales. Ya que la fertilización (p. 175) es interna, no hay necesidad de volver al agua para la reproducción y ponen huevos amniotas (p. 191) con una cubierta correosa, a partir de los cuales se desarrollan las crías sin pasar por el estado larvario (p. 165). Lo mismo que los peces y los anfibios (p. 77), son exotérmicos (p. 130).
cleidoico, cleidoic (adj.), dícese de un huevo, como, p. ej.: el de los reptiles (\uparrow), que tiene una cáscara o cubierta impermeable al agua, pero que es permeable al aire.

Quelonios, Chelonia (n), orden de Reptiles (\uparrow), que comprende las tortugas, que se caracterizan por las placas óseas, recubiertas de placas córneas, que rodean el cuerpo.

Escamosos, Squamata (n), orden de Reptiles (\uparrow), que incluye las serpientes y los lagartos escamosos
Lacertilidos, Lacertilia (n), suborden de los Escamados (\uparrow), que incluye los lagartos. La mayoría son tetrápodos (p .77), con una cola (p .75) larga, tienen párpados que se abren y cierran, tienen membrana timpánica (p. 158) y articulación normal de las mandíbulas (p. 105)
Ofidios, Ophidia (n), suborden de los Escamados (\uparrow), que incluye las serpientes. Tienen el cuerpo alargado y \sin extremidades, carecen de membrana timpánica (p. 158) y sus párpados no son móviles. Las mandíbulas (p. 105) pueden dislocarse, para permitir así tragar enteras presas de gran tamaño.
cloaca, cloaca (n), cámara en la que finaliza el intestino ($p .98$) de todos los vertebrados ($p .74$), salvo los mamíferos (p. 80) placentarios (p. 192), y en la que se descarga el contenido del tracto digestivo, los riñones (p. 136) y los órganos reproductores (p. 173). Existe una única abertura que conduce al exterior
glándula venenosa, poison gland, glándula salivar (p. 87) modificada que puede estar presente en algunas especies (p. 40) de, p. ej.: los ofidios (\uparrow), y que secreta (p. 106) sustancias tóxicas que pueden ser inyectadas a la presa; p. ej.: a través de los colmillos.

Aves, Aves (n), clase de los Cordados (p. 74). Se caracterizan por la posesión de plumas (p. 147) para aislamiento y el vuelo (p. 147) y otras adaptaciones para volar. Aunque son similares en muchos aspectos a los Reptiles (\uparrow), de los que proceden por evolución (p. 208), son endotérmicas (p. 130). Existen algunas especies (p. 40) incapaces de volar. Ponen huevos amniotas (p. 191) con una cáscara calcárea

pico, bill (n), estructura córnea que engloba las mandí bulas (p. 105) de las aves. Carece de dientes y puede tomar numerosas formas adaptadas a diferentes métodos de alimentación
quilla, keel (n), saliente óseo del esternón (p. 149) de las aves, a la que se fijan los poderosos músculos (p .148) pectorales (p .75) para volar (p .147).
saco aéreo, air sac, cada uno de los sacos de pared delgada y vejigosos de las aves, que están conectados a los pulmones y que están presentes en las cavidades abdominal (p. 116) y toracica (p. 115). In cluso penetran en algunos huesos del esqueleto (p. 143) para aligerar el cuerpo del ave sin reducir su resistencia. La tráquea (p. 115) de algunos insectos (p.69) contiene sacos aéreos

Mamíferos, Mammalia (n), clase de los Cordados (p. 74), que incluye, p. ej.. los perros, los gatos y los monos. Son endotérmicos (p. 130), tienen una piel provista de glándulas (p.87) y están cubiertos de piel para aislarse del exterior. Se caracterizan por la posesión de glándulas mamarias que secretan (p . 106) leche para alimentar a las crías. Poseen dentición (p. 104) heterodonta, un paladar secundario que les permite comer y respirar al mismo tiempo y cerebro ($p .155$) relativamente grande.
Monotremas, Monotremata (n), subclase de los Mamíferos (\uparrow), que incluye los equidnas y los ornitorrincos, que son especies primitivas (p.212). Tienen cloaca (p. 79) y ponen huevos. Las crias son llevadas en una bolsa, o marsupio, y alimentadas con leche secretada (p. 106) por un surco del abdomen (p. 116). Están cubiertos de pelo, pero tienen temperatura corporal relativamente baja. Tienen un cerebro (p. 155) poco desarrollado

Metaterios, Metatheria (n), subclase de los Mamiferos (\uparrow), que incluye a los marsupiales, o formas provistas de bolsa, tales como el canguro. Son vivíparos (p. 192), pero las crías nacen muy poco desarrolladas después de un breve periodo de gestación (p. 192) y son después transferidas a una bolsa donde son amamantadas y completan su crecimiento.
Euterios, Eutheria (n), subclase de los Mamiferos (\uparrow), que comprende los placentarios (p. 192), realmente "viviparos" (p. 192).
anatomía, anatomy (n), estudio o ciencia de la estructura interna de los animales y las plantas.
histologia, histology (n), estudio o ciencia de los tejidos (p.83).
las tres subciases
principales de Marififeros

Monotremas

Metaterios (marsupiales)
p. ej.: canguro

Euterios (mamiferos placentarios) p. ej.: elefante

morfología, morphology (n), estudio o ciencia de la estructura externa y la forma de los animales y las plantas, sin referencia particular a su función y estructura interna o anatomía (\uparrow)
fisiología, physiology (n), estudio o ciencia de los pro cesos que tienen lugar en los animales y las plantas.
raíz, root (n), estructura de una planta que la sujeta firmemente al suelo y que es responsable de la ab sorción de agua (que contiene sales minerales) de suelo y su paso al tallo. A diferencia de los tallos subterráneos, una raíz no contiene clorofila (p. 12) y no puede producir hojas ni yemas.
raiz pivotante, tap root (n), raiz principal, por lo general central, que se distingue claramente de las otras raíces del sistema radical.
raíz adventicia, adventitious root, cualesquiera de las numerosas raices que crecen directamente del tallo de la planta, como en los bulbos (p. 174), los cormos (p. 174) y los rizonas (p. 174), y que no crece a partir de una raíz principal
raíz fibrosa, fibrous root, raíz que crece al mismo tiempo que la germinación (p.168) de la planta, como, p ej., de una graminea, y a partir de la cual crecen otras laterales.
caliptra, root cap, capa de células situada en el ápice de una raíz que protege la punta de crecimiento contra la abrasión y el desgaste debido a las partículas de suelo, etc
caliptra corte longitudinal

pelo radical, root hair. estructura delgada, en forma de tubo y de paredes delgadas, que crece a partir de la epidermis (p. 131), tras el ápice radical, y que está en intimo contacto con el suelo que rodea la raíz. Aumenta sobremanera la superficie radical para absorción de agua. El agua penetra en el pelo radical por ósmosis (p. 118) debido a que los pelos radicales y la capa pilífera (p .82) contienen un fluido con un potencial osmótico (p.118) menor que el del agua del suelo.
absorber, absorb (v), tomar líquido a través de la superficie absorción (n).
capa pilifera, piliferous layer, capa sencilla de células que rodea el ápice de la raíz y parte de ésta en una que rodea el apice de la raiz y parte de esta en una planta, y a partir de la cual crecen los pelos radicales (p. 81). Las celulas contienen un fluido con un poten cial osmótico (p. 118) inferior al del agua del suelo,
por lo que es la principal región de absorción (p. 81) por lo que
de la raiz.

hoja, leaf (n), estructura verde, por lo general aplanada, que puede ir o no unida al tallo de una planta mediante un pecíolo (\downarrow). Su función es fabricar e alimento para la planta en forma de carbohidratos (p. 17) por medio de la fotosíntesis (p.93).
vena ${ }^{\text {p }}$, vein (n), cualesquiera de las estructuras en for ma de red que se encuentran en una hoja y que proporcionan soporte, así como transporte del agua usada durante la fotosíntesis (p. 93), y solutos orgánicos (p. 15), hacia dentro y hacia fuera del tejido foliar (\downarrow).
lámina, lamina (n), estructura delgada, plana y de forma laminar, que comprende la mayor parte de la hoja.
pecíolo, petiole (n), pedúnculo o tallo que puede unir la lámina (\uparrow) al tallo de una planta.
nervio medio, midrib (n), nervio central o medio de una hoja, que es una prolongación del pecíolo (\uparrow) en la lámina de la hoja.
tallo, stem (n), parte de la planta que suele estar erguida por encima del suelo y que produce las hojas, los brotes y las flores de la planta. Su función es transportar agua y alimentos a través de la planta, espaciar las hojas y mantener las flores en una posicion adecuada para la polinización (p. 183).
verticilo, whorl (n), grupo de tres o más órganos iguales, dispuestos en un círculo al mismo nivel sobre un tallo.
nudo, node (n), parte del tallo, a partir de la cual surgen las hojas.
entrenudo, internode (n), región del tallo entre los nu$\operatorname{dos}(\uparrow)$.
yema, bud (n), brote no desarrollado que puede dar lugar a una flor o a un nuevo brote. Consiste en un corto tallo, alrededor del cual las hojas inmaduras están plegadas y superpuestas. Las yemas pueden estar en la punta de un brote y se llaman entonces terminales, o en las axilas (\downarrow), en cuy.o caso se denominan axilares.
brote, shoot (n), toda la parte de la planta que está por encima del suelo y que suele consistir en tallo, hojas, yemas y flores.
axila, axil (n), ángulo entre el lado superior de una hoja y el tallo sobre el que crece.
lenticela, lenticel (n), pequeño poro (p. 128) o hendidura sobresaliente en la corteza (p. 172) de un tallo lenoso, a traves del cual pueden pasar el oxígeno y el dioxido de carbono.
tejido, tissue (n), grupo de células que realizan una función particular en un organismo.
tejido vascular, vascular tissue, tejido (\uparrow) especializado principalmente para el transporte de alimentos y agua a través de una planta, compuesto por lo general de xilema (p. 84) y floema (p. 84), junto con esclerénquima (p.84) y parénquima (\downarrow).
tejido fundamental, ground tissue, tejido (\uparrow), tal como la médula (p. 86) y el córtex (p. 86), compuesto por lo general de parénquima (\downarrow) y que ocupa todas las partes de la planta que no contienen tejido especializado
tejido de relleno $=$ tejido fundamental (\uparrow)
tejido epidérmico, epidermal tissue, tèjido (\uparrow) dérmico (p. 131) que forma una membrana exterior conti nua sobre la superficie de una planta. No existen es pacios entre las células, pero está interrumpido por los estomas (p. 120).
cuticula, cuticle (n), superficie exterior impermeable al agua, cerosa o resinosa, del tejido epidérmico (\uparrow), que se presenta en las partes aéreas (p.219) de la planta.
parénquima, parenchyma (n), tejido (\uparrow) formado por células redondeadas englobadas en una pared celular (p. 8) de celulosa (p. 19) que contiene espacios intercelulares (p. 110) Ilenos de aire. El parénquima sujeta las partes no leñosas de la planta y funciona tambien como tejido de reserva en las raices, el tallo y las hojas.
colénquima, collenchyma (n), tejido (p. 83) formado por células alargadas en el que la pared celular primaria (p.14) está engrosada de modo irregular con celulosa (p. 19). El tejido colenquimático está especializado en proporcionar soporte a las partes de la planta de crecimiento activo, que pueden necesitar, asimismo, ser flexibles.
esclerénquima, sclerenchyma (n), tejido (p.83) que tiene una pared celular secundaria ($p .14$) de lignina (p. 19) y que está compuesto por esclereidas (\downarrow) y fibras (\downarrow). Su función es proporcionar apoyo
esclereida, sclereid (n), cualesquiera de los dos tipos de células que constituyen el esclerénquima (\uparrow). No siempre es sencillo diferenciar entre una esclereida y una fibra (\downarrow), aunque por lo general son un poco más largas que anchas, y son las células de la cáscara de las nueces y del hueso de los frutos
fibra ${ }^{\mathbf{P}}$, fibre (n), cualesquiera de los dos tipos de células que constituyen el esclerénquima (\uparrow). Son células lignificadas (p. 19) alargadas, sin contenido vivo y que proporcionan gran apoyo.
xilema, xylem (n), tejido vascular (p. 83), consistente en células huecas sin contenido vivo y tejido (p.83) de soporte adicional, que incluye fibras (\uparrow), esclereidas (\uparrow) y algo de parénquima ($p .83$). Las pare des celulares (p .8) están lignificadas (p .19), varian do el grosor en forma y amplitud. Los dos tipos principales de células que se encuentran en el xilema son vasos (\downarrow) y traqueidas (\downarrow)
traqueida, tracheid (n), célula del xilema (\downarrow), que constituye uno de los dos tipos de células que hay en él. La traqueida es alargada y tiene extremos ahusados"y tabiques transversales. Las traqueidas dis curren paralelas a la longitud del órgano que las contiene. Cada una de ellas va conectada a sus vecinas mediante pares de punteaduras (p.14), a tra vés de las cuales el agua puede pasar fácilmente
floema, phloem (n), tejido vascular (p. 83) que transporta alimentos a través de la planta (translocación (p. 122)]. Contiene tubos cribosos (\downarrow) y células acompañantes (\downarrow), y en algunas plantas puede contener también otras células, tales como parénquima (p. 83) y fibras (\uparrow).
tubo criboso, sieve tube, columna de células alarga das y de paredes delgadas que están especializa das en el transporte de materiales alimenticios a tra vés de la planta.
placa cribosa, sieve plate, pared terminal perforada de un tubo criboso (\uparrow), a través de la cual pasan filamentos de citoplasma (p. 10) para ponerse en contacto con células vecinas

tipos de células en el xilema

produce xilema hacia el interior

cambium, cambium (n), capa de estrechas células de pared delgada que está situada entre el xilema (p. 84) y el floema (p. 84) y producen, por división, el xilema secundario (p. 172) y el floema secundario (p. 172). El cambium no pierde su capacidad de formar nuevas células y es responsable del crecimiento lateral de las plantas.
tejido secundario, securicaary tissue, tejido (p. 83) adicional formado por el cambium (\uparrow) que conduce a un aumento de las dimensiones laterales del tallo o la raíz de una planta
estela, stele (n), núcleo o haz de tejido vascular (p. 83) en el centro de las raíces o los tallos de las plantas.
exodermis, exodermis (n), capa exterior de células engrosadas que sustituyen a la epidermis (p.131) en las partes más viejas de las raices.
endodermis, endodermis (n), capa de células que rodea la estela (\uparrow) en la parte más interna del córtex (\downarrow) de una raíz.
córtex, cortex (n), tejido (p.83), generalmente de parénquima ($p .83$), que aparece en los tallos y las raíces de las plantas entre la estela (\uparrow) y la epidermis (p . 131). Tiende a dar mayor rigidez al tallo.
médula, pith (n), núcleo central del tallo compuesto de tejido (p .83) de parénquima (p .83) y que se encuentra dentro de la estela (\uparrow).
rayo medular, medullary ray, placa de células de parénquima (p .83) dispuestas radialmente y que van desde la medula (\uparrow) hasta el córtex (\uparrow) o terminan en el xilema (p .84) secundario y el floema (p. 84).
periciclo, pericycle (n), capa exterior de la estela (\uparrow) con la endodermis (\uparrow) y formada por tejido de parénquima (p .83).
mesófilo, mesophyll (n), tejido ($p .83$) situado entre las capas epidérmicas (p. 131) de la lámina (p. 84) de una hoja y que está implicado en la fotosíntesis (p. 93).

tipos de epitelio

membrana basal

ciliado

glandular
${ }^{-}$ células globosas

epitelio estratificado, stratified epithelium $=$ epitelio compuesto (\uparrow)
epitelio de transición, transitional epithelium, epitelio estratificado (\uparrow) capaz de dilatarse que se encuentra en zonas tales como la vejiga (p. 135)
tejido conjuntivo, connective tissue, tejido (p.83) que desempeña funciones de soporte o envoltura en los animales. Tiene unas pocas células muy pequeñas con grandes cantidades de material intercelular (p. 110) o matriz (\downarrow).
matriz, matrix (n), sustancia fundamental intercelular (p.110) en la que están contenidas las células.
tejido areolar, areolar tissue, tejido conjuntivo (\uparrow) que rodea y conecta los órganos. Está compuesto de colágeno (\downarrow) y fibras elásticas (\downarrow) dentro de una matriz (\uparrow).
fibroblasto, fibroblast (n), célula de forma irregular, aunque a menudo alargada y aplanada, que actúa en la producción de colágeno (\downarrow).
mastocito, mast cell, célula presente en la matriz (\uparrow) del tejido areolar (\uparrow) que produce sustancias anticoagulantes (p .128) y que se encuentra también en el endotelio ($p .87$) de los vasos sanguíneos (p. 127).
macrófago, macrophage (n), célula grande. muy abundante en animales, pero especialmente en el tejido conjuntivo (\uparrow). Los macrófagos se desplazan libremente a través del tejido y en los nódulos linfáti\cos (p. 128) mediante movimientos ameboides (p. 44) y destruyen las bacterias (p. 42) perjudiciales tragándolas, al mismo tiempo que reparan cualquier daño producido en el tejido (p. 83)
fibra de colágeno, collagen fibre, fibra no elástica con una gran resistencia a la tracción, que se encuentra en el tejido conjuntivo (\uparrow), en particular en los tendones (p . 146). la piel y el material esquelético (p. 145). Se conoce también por el nombre de fibra blanca.
fibra elástica, elastic fibre, fibra (p. 143) muy elástica que se encuentra en el tejido conjuntivo (\uparrow), en particular en los ligamentos (p. 146) y en órganos tales como los pulmones (p .115). Se conoce también por el nombre de fibra amarilla.
tejido adiposo, adipose tissue, tejido conjuntivo (\uparrow) similar al areolar (\uparrow), pero que contiene células grasas muy apretadas y que se encuentra debajo de la piel y va asociado a ciertos órganos para proporcionar aislamiento, protección y servir de almacén de energía.
hueso, bone (n), tejido conjuntivo (\uparrow) duro formado por osteoblastos (p.90) dentro de una matriz (\uparrow) compuesta de fibras de colágeno (p.88) y fosfato cálcico. Constituye la mayor parte del esqueleto (p. 145).

estructura de un hueso largo

hueso compacto, compact bone, hueso en el que los conductos de Havers (\downarrow) están densamente empaquetados.
periostio, periosteum (n), tejido conjuntivo (\uparrow) que rodea al hueso y que contiene osteoblastos ($p .90$), as como fibras de colágeno (\uparrow) que le vuelven duro Los músculos (p. 143) y los ligamentos (p. 146) se unen al periostio
conducto de Havers, Haversian canal, canal que dis curre a lo largo de toda la longitud del hueso y que contiene los nervios (p. 149) y los vasos sanguíneos (p. 127), así como los vasos linfáticos (p.128) que secretan ($p .106$) los osteocitos ($p .90$).
sistema de Havers, Haversian system, sistema de conductos de Havers (\uparrow) rodeados por anillos de hueso y que conectan con la superficie del hueso y con su médula (p. 90)
canalículo, canaliculus (n), cada uno de los finos canales que une las lagunas (\downarrow) y contiene las ramificaciones de los osteocitos (p. 90).
endostio, endosteum (n), capa delgada de tejido conjuntivo (\uparrow) que se encuentra dentro de un hueso, próxima a la cavidad que contiene la médula (p.90)
laguna, lacuna (n), espacio entre las láminas óseas (\downarrow) en los que se encuentran los osteoblastos (p. 90).
lámina ósea, bone lamellae, cada una de las capas anulares de matriz (\uparrow) calcificada del hueso que es tá rodeada por los conductos de Havers (\uparrow)

condroblasto, chondroblast (n), célula presente en el cartílago (\downarrow) y que secreta (p. 106) la matriz (p. 88) de la condrina (\downarrow)
cartílago, cartilage (n), tejido (p.83) esquelético (p. 145) compuesto de condroblastos (\uparrow) en una matriz (p.88) de condrina (\downarrow). Contiene asimismo numerosas fibras (p. 88) de colágeno.
condrina, chondrin (n), material gelatinoso transparente de color blanco azulado que forma la sustancia fundamental del cartílado (\uparrow). La condrina es un material elástico
cartílago hialino, hyaline cartilage, cartílago (\uparrow) que contiene fibras ($p .88$) de colágeno y que forma el esqueleto (p.145) embrionario (p. 166)
osteoblasto, osteoblast (n), célula presente en el cartílago hialino (\uparrow), que es responsable de la deposición de la matriz (p .88) caicificada del hueso.
osteocito, osteocyte (n), osteoblasto (\uparrow) que se incorpora al hueso durante su formación y que ha dejado de dividirse
hueso esponjoso, spongy bone, hueso que contiene una red de láminas óseas (p.89) rodeando lagunas (p. 89) situadas irregularmente, que contiene médula (\downarrow) ósea.
epífisis, epiphysis (n), extremo del hueso de un miembro (p. 147) en los mamíferos (p. 80) que penetra y participa en la articulación (p. 146)
médula, marrow (n), tejido (p .83) graso blando presente en algunos huesos y que produce los glóbulos blancos (\downarrow).
sangre, blood (n), fluido especializado de los animales que se encuentra en los vasos (p. 127) contenido dentro de las paredes del endotelio (p.87), y que puede contener un pigmento (p .126) usado en el transporte de los gases respiratorios (p. 112), así como para transportar nutrientes y otros materiales a través del cuerpo.
plasma, plasma (n), porción fluida transparente y cas incolora de la sangre (\uparrow) que lleva los glóbulos blancos (\downarrow), los glóbulos rojos (\downarrow) y las plaquetas (p. 128). Consiste en un 90 por 100 en agua y en un 10 por 100 de otros compuestos orgánicos (p.15) e inorgánicos (p.15).
suero, serum (n), fluido transparente de color amarillo claro que queda después de que la sangre (\uparrow) ha coagulado (p .129), y consta esencialmente de plasma (\uparrow) sin agentes coagulantes.

cartílago condroblasto (célula cartilaginosa)
células sanguíneas
glóbulo rojo 0 eritrocito

glóbulos blancos o leucocitos

linfocito

glóbulo rojo, red blood cell, célula sanguinea que contiene el pigmento (p. 126) respiratorio (p.112) como, p. ej.: hemoglobina (p. 126)
eritrocito, erythrocyte $(n)=$ glóbulo rojo (\uparrow)
glóbulo blanco, white blood cell, célula sanguínea que no contiene pigmento (p. 126) respiratorio (p. 112). Los glóbulos blancos son importantes para defender al cuerpo contra las enfermedades, porque son capaces de tragar bacterias (p. 42), así como de producir anticuerpos (p.233).
leucocito, leucocyte $(n)=$ glóbulo blanco (\uparrow)
leucocito polimorfonuclear, polymorphonuclear leu cocyte, glóbulo blanco (\uparrow) con un núcleo (p. 13) lobulado de tinción oscura y citoplasma (p.10) granular. Se producen en la médula ósea (\uparrow)
granulocito, granulocyte (n) = leucocito polimorfonuclear (\uparrow)
eosinófilo, eosinophil (n), leucocito polimorfonuclear (\uparrow) que puede teñirse con colorantes ácidos (p. 15), tales como la eosina. Su número suele ser bastante reducido en la sangre (\uparrow), pero aumenta si el cuerpo sufre la infección de parásitos (p.92) o de una enfermedad alérgica (p. 234).
basófilo, basophil (n), leucocito polimorfonuclear (\uparrow que puede teñirse con colorantes básicos (p. 15). Su número suele ser muy bajo en la sangre (\uparrow), pero son capaces de tragar bacterias (p.42).
neutrófilo, neutrophil (n), tipo común de leucocitos (\uparrow) que son capaces de salir de la corriente sanguinea (\uparrow) y pasar a los tejidos (p. 83) del cuerpo para tragar bacterias (p. 42) cuando se produce una invasión. Cuando mueren dan lugar a pus.
linfocito, lymphocyte (n), glóbulo blanco (\uparrow) que es producido en el sistema linfático (p. 128) y que es importante para defender el cuerpo contra las enfermedades. Tiene un núcleo (p.13) grande y citoplasma (p.10) transparente.
monocito, monocyte (n), tipo de máximo tamaño de os glóbulos blancos (\uparrow) producido por el sistema linfático (p. 128). Tiene un núcleo esférico (p.13) y citoplasma (p.10) transparente. Traga activamente y devora (fagocita) cualquier cuerpo extraño invasor, tal como bacterias (p. 42).
tejido nervioso, nervous tissue, tejido (p. 83) que contiene las células nerviosas (p. 149) especializadas en la transmisión de los impulsos nerviosos (p. 150) junto con el tejido conjuntivo (p.88) de soporte.
nutrición, nutrition (n), medio por el cual un organismo obtiene su energía usando nutrientes (\downarrow)
nutriente, nutrient (n), cualquier material tomado por un organismo vivo y que le permite crecer y mantenerse sano, sustituir el tejido (p. 83) perdido o dañado y proporcionar energía para estas y otras funciones.
holofítica, holophytic (adj.), dícese de una nutrición (\uparrow), tal como la de las plantas, en la que pueden tomarse compuestos (p.15) inorgánicos simples y transformarse en compuestos (p. 15) orgánicos complejos usando la energía de la luz, con el fin de proporcionar energía para el metabolismo (p.26), para el crecimiento o para la fabricación de protoplasma (p. 10) vivo.
quimiosintética, chemosynthetic (adj.), dícese de la nutrición (\uparrow), en la que la energía se obtiene mediante una reacción química inorgánica (p.15) sencilla, tal como la oxidación (p.32) de amoniaco a nitrito que realiza una bacteria (p.42).
autótrofa, autotrophic (adj.), dícese de la nutrición (\uparrow), en la que se toman compuestos (p.15) inorgánicos simples y se convierten en compuestos (p. 15) orgánicos complejos.
heterótrofa, heterotrophic (adj.), dícese de la nutrición (\uparrow), tal como en los animales y los hongos (p. 45), en la que los compuestos (p. 15) organicos solo pueden fabricarse a partir de otros compuestos orgánicos complejos que han sido tomados previamente por el organismo
saprozoica, saprozoic (adj.), dícese de la nutrición (\uparrow), en la que el organismo toma compuestos (p. 15) orgánicos sólo en solución (p.118) en lugar de en forma sólida.
holozoica, holozoia (adj.), dícese de la nutrición (\uparrow) tal como se encuentra en los animales, en la cual los compuestos (p.15) orgánicos complejos son desdoblados en sustancias simples que son utilizadas entonces para construir las estructuras del cuerpo u oxidantes (p .32) para suministrar la energía necesaria al organismo.
saprofítica, saprophytic (adj.), dícese de la nutrición (\uparrow) en la cual el organismo obtiene compuestos (p. 15) orgánicos complejos en solución (p.118) de animales muertos o plantas marchitas.
parásita, parasitic (adj.), dícese de la nutrición (\uparrow), en la que el organismo logra su alimento directamente de otro organismo vivo, a expensas del huésped (p. 111), pero \sin necesariamente matarle.

holofítica/autótrofa

heterótrợa/parásita

 heterotroia/parásiabacteria patóqena

heterótrofa/holozoica ave

uniones entre las fases luminosa y oscura de la fotosintesis
macronutriente, macronutrient (n), nutriente (\uparrow) que un organismo necesita en cantidades sustanciales Véase p. 240.
elementos principales, major elements = macronutrientes (\uparrow).
micronutriente, micronutrient (n), nutriente (\uparrow) nece sario sólo en cantidades mínimas o vestigiales. Véa se p. 241.
clorosis, chlorosis (n), amarilleamiento de las hojas de las plantas verdes causado por pérdida de clorofila (p. 12).
absorción activa de minerales, active mineral uptake, absorción y transporte a través de una planta, atravesando una membrana celular (p. 14), de iones minerales desde regiones de baja concentración a regiones de alta concentración. El proceso requiere energia, tanto para absorber los minerales como para retenerlos.
absorción pasiva de minerales, passive mineral upta ke, absorción y transporte de iones minerales a traves de una planta, por lo general atravesando una membrana celular (p. 14), desde regiones de alta concentracion a regiones de baja concentracion, por difusión (p.119), sin usar energía.
fotosintesis, photosynthesis (n), proceso que tiene lugar en las plantas verdes en el que se elaboran compuestos (p. 15) orgánicos a partir de compuestos (p. 15) inorgánicos usando la energía de la luz. Tiene lugar en dos fases principales: en la que depende de la luz, o fotoquimica, la clorofila (p. 12) de los cloroplastos (p.12), situados principalmente en las hojas de las plantas, absorbe la luz y la usa para producir ATP (p. 33) y proporcionar átomos de hidrógeno oxidando (p. 32) el agua. Éstos se utilizan después en la reducción (p. 32) del dióxido de carbono. En la fase oscura, o química, se reduce dióxido de carbono y se elaboran carbohidratos (p. 17). La fotosíntesis sólo tiene lugar a temperaturas adecuadas y en presencia de clorofila, dióxido de carbono, agua y luz.
factor limitante, limiting factor, cualesquiera de los factores que controlan la velocidad a la que una reacción química, como, p. ej., la fotosíntesis (\uparrow), tiene lugar. La velocidad viene limitada por el factor más cercano a su valor mínimo.
pigmento fotosintético, photosynthetic pigment, pigmento (p. 126) que constituye la clorofila (p. 12) y que absorbe (p.81) luz. Las siguientes sustancias son pigmentos fotosintéticos: clorofila a, clorofila b, caroteno y xantofila.

fotofosforilación cíclica, cyclic photophosphorylation etapa de la fase luminosa de la fotosíntesis (p. 93) en la que la luz está implicada en la formación de ATP ($p .33$) a partir de ADP ($p .33$) mediante la adición de fosfato.
fotofosforilación no cíclica, non-cyclic photophosphorilation, etapa de la fase luminosa de la fotosíntesis (p .93) en la que la luz está implicada en la formación de ATP (p. 33) a partir de ADP (p. 33), mediante la adición de fosfato, y en la que se desdobla agua para proporcionar iones hidrógeno
espectro de absorción, absorption spectrum, representación en diagrama del modo en el que una sustancia, tal como la clorofila (p. 12), absorbe (p. 81) radiación de diferentes longitudes de onda en distintas cantidades. La clorofila absorbe fácilmente luz azul y roja, por lo que parece verde.

espectros de acción y de absorción en la fotosíntesis

$400 \quad 500 \quad 600 \quad 700$
longitud de onda (nm)
espectro de acción de la fotosíntesis
espectro de absorción clorofila a
espectro de absorción clorifila b
espectro de acción, action spectrum, representación en diagrama del modo en el que la radiación de diferentes longitudes de onda afecta a un proceso, ta como, p. ej., la fotosíntesis (p. 93). En este caso, de muestra que la luz roja y la azul son las más eficaces en la acción de fotosíntesis.
fotosistema I, photosystem I, Uno de los dos sistemas de pigmentos (p.126), cada uno de los cuales contiene clorofila a (p.12), pigmentos accesorios y portadores de electrones, y que están implicados en las reacciones de transferencia de electrones acopladas a la fosforilación (\uparrow). Conocido también como sistema pigmentario I O SPI.
fotosistema II, photosystem II, véase fotosistema (\uparrow). Conocido también por sistema pigmentario II o SPII.
ferredoxina, ferredoxin (n), cualesquiera de los pig mentos (p .126) pardorrojizos (que contienen hierro) que funcionan como portadores de electrones en la fotosíntesis (p. 93).
plastoquinona, plastoquinone (n), portador de electro nes usado en la fotosíntesis (p.93)
planta C3, C3 plant, C3 plant, planta en la que PGA (p.97), que contiene tres átomos de carbono, es producido en la primera fase de la fotosíntesis (p.93). La fotosíntesis de esta planta es menos eficaz que en las plantas C4 (\downarrow).
planta C4, C4 plant, planta en la que se produce ácido dicarboxílico que contiené cuatro átomos de carbono en la primera fase de la fotosíntesis (p.93). El método de fijación del dióxido de carbono ha evolucionado a partir del de las plantas C3 (\uparrow) y funciona más eficazmente.
vía del C_{4} de la fijación del CO_{2}

ciclo de Calvin, Calvin cycle, pasos de la fase oscura de la fotosíntesis (p. 93) en los que se reduce (p. 32) de la fotosíntesis (p. 93) en los que se reduce (p.32) dióxido de carbono usando el hidrógeno producido en la fase luminosa, y es sintetizado en carbohidra tos (p. 17) usando la energía del ATP (p.33), también formado durante la fase luminosa.

ribulosa difosfato, ribulose diphosphate RUDP, pentosa (p. 17), con la que va combinado el dióxido de carbono al comienzo del ciclo de Calvin (\uparrow).
ácido fosfoglicérico, phosphogliceric acid $P G A$, ácido (p. 15) orgánico complejo que se forma como resul tado de la combinación de dióxido de carbono con RUDP (\uparrow) en la fijación del dióxido de carbono al comienzo del ciclo de Calvin (\uparrow).
fosfogliceraldehído, phosphoglyceraldehyde (n) compuesto formado como resultado de la reducción (p.32) de PGA (\uparrow) durante el ciclo de Salvin (\uparrow). Después es sintetizado en almidón ($p .18$), que es el producto más importante de la fotosíntesis (p.93). Conocido también como triosa fosfato.
ácido fosfoenolpirúvico, phosphoenol pyruvic acid PEP, compuesto (p .15) orgánico utilizado por las plantas $C_{4}(p,-96)$ en la fijación del dióxido de carboplantas C_{4} ($\mathrm{p}=\mathrm{en}$) el dióxido de carbono se puede almacenar en forma química y utilizar más tarde. Esto es muy útil en zonas, p. ej., en los trópicos, donde el dióxido de carbono puede resultar escaso.
punto de compensación, compensation point, punto en el que la intensidad de la luz es tal que la cantidad de dióxido de carbono producida por la respiración (p.112) y la fotorrespiración (\downarrow) equilibra exactamente la cantidad consumida en la fotosíntesis (p. 93).
fotorrespiración, photorespiration (n), proceso dependiente de la luz en le que se produce dióxido de carbono y se consume oxígeno, gastando carbono y energía.
nutrición animal, animal nutrition, nutrición (p.92) heterótrofa en la que se necesitan carbohidratos (p. 17) y grasas para los materiales estructurales y para energía, aminoácidos ($p .21$) para proporcionar nitrógeno y estimular el crecimiento, etc., minerales para garantizar que el cuerpo funciona en buenas condiciones y vitaminas para estimular y mantener el crecimiento.
joule, joule (n), trabàjo realizado cuando el punto de aplicación de una fuerza de un newton se desplaza una distancia de un metro en la dirección de la fuerza. Una caloría (\downarrow) es equivalente a 4,18 joules. El joule puede usarse como medida del valor energético de los nutrientes (p. 92)
kilojoule, kilojoule $(n)=1000$ joules (\uparrow)
caloría, calorie (n), véase joule (\uparrow)

tubo digestivo, gut (n), tubo, el tracto gastrointestinal, que suele ir desde la boca hasta el ano (p. 103) en los animales y que en seres humanos llega a alcanzar una longitud de 9 metros. En él se transporta el alimento, se digiere (\downarrow) y se absorbe (p.81).
canal alimentario, alimentary canal $=$ tubo digestivo (\uparrow).
ingestión, ingestion (n), proceso de toma de nutrientes (p.92) por parte del cuerpo para su digestión (\downarrow).
digestión, digestion (n), desdoblamiento de compuestos (p.15) orgánicos complejos o nutrientes (p. 92) en materiales solubles mucho más sencillos que pueden ser utilizados entonces en el metabolismo (p. 26) del animal.
egestion, egestion (n), proceso de eliminación o des carga de alimentos o productos residuales del cuerpo.
heces, faeces (n. pl.), sustancias que quedan después de la digestión (\uparrow) y absorción (p. 81) del alimento en el canal alimentario (\uparrow).
defecación, defaecation (n), proceso de eliminar alimentos no utilizados por el cuerpo. Los materiales defecados no participan en el metabolismo (p. 26) del organismo y, por lo tanto, no constituyen un ejemplo de excreción (p. 134)
asimilación, assimilation (n), proceso que sigue a la digestión (\uparrow), en el que los compuestos orgánicos solubles sencillos penetran en las células y después pueden ser convertidos en los compuestos orgánicos complejos, a partir de los cuales se hace el organismo asimilar (v.)
cavidad bucal, buccal cavity, parte del canal alimentario (\uparrow) de los mamíferos (p. 80), en el cual la boca se abre y donde son masticadas (p. 104) las partículas de alimento antes de ser tragadas.
moco, mucus (n), líquido viscoso producido por las membranas mucosas (p .14) de los animales y usado para protección y lubrificación. Se llama también mucus.
saliva, saliva (n), líquido secretado en la cavidad bucal (\uparrow) por la glándula salival (p. 87) en respuesta a la presencia de alimento. Consiste básicamente en mucus (\uparrow) y lubrifica el alimento antes de la deglución. En algunos animales contiene enzimas (p. 28) para ayudar a la digestión (\uparrow) del almidón (p. 18)
faringe, phaynx (n), parte del canal alimentario (\uparrow) situada entre la cavidad bucal (\uparrow) y el esófago (\downarrow), hacia la que la lengua empuja el alimento que ha sido masticado (p. 104). La faringe se contrae entonces por acción muscular (p. 143) para forzar al alimento hacia el esófago. En los peces, las hendiduras branquiales (p . 113) se abren en la faringe
esófago, oesophagus (n), parte del canal alimentario (\uparrow) situado entre la faringe (\uparrow) y el estómago (p. 100). Está recubierto de una membrana mucosa (p. 14) plegada y tiene varias capas de fibras de musculatura lisa que se contraen para empujar el ali mento hacia el estómago.
epiglotis, epiglottis (n), tapa que cierra la tráquea (p. 175) durante la deglución, de modo que el alimento pasa al esófago (\uparrow) y no a la tráquea.
bolo, bolus (n), masa redonda formada por partículas alimenticias masticadas (p. 104) y saliva (\uparrow) en la que se convierte la comida en la cavidad bucal (\uparrow antes de la deglución.
estómago, stomach (n), parte del canal alimentario (p. 98) situada entre el esófago (p.99) y el duodeno (\downarrow), a la cual llega el alimento y puede ser almacenado durante largos períodos de tiempo, por lo que el animal no necesita estar comiendo constantemente. El alimento se mezcla con jugos gástricos, y aunque en él se absorben (p. 81) pocas sustancias hay materiales, tales como minerales o vitaminas (p.25), que pueden pasar a la corriente sanguínea (p.90). El estómago es musculoso (p.143) y está forrado de una membrana mucosa (p.14)
peristaltismo, peristalsis (n), ondas de contracciones rítmicas que tienen lugar en el canal alimentario (p.98) mediante acción muscular, y que empujan el alimento a través del canal
célula péptica, peptic cell, célula que se encuentra en las glándulas gástricas (p. 87), que secreta (p. 106) los enzimas ($p .28$), pepsina (p. 107) y renina (p. 106) que digieren (p.98) las proteínas (p.21) y la proteína láctea [en las crías de los mamíferos (p.80)], respectivamente.
glándula del fundus, fundis gland, glándula (p. 87) del estómago (\uparrow) que secreta (p. 106) mucus (p. 99) para proteger y lubrificar las paredes estomacales.
abertura del

célula oxíntica, oxyntic cell, célula que en gran número existen en las glándulas gástricas (p.87), que secretan (p. 106) ácido clorhídrico (HCl), el cual destruye las bacterias (p. 42) perjudiciales, permite el aprovechamiento de las sales de calcio y de hierro y proporciona un pH (p.15) convenientemente bajo para la formación de pepsina (p. 107).
quimo, chyme (n), mezcla semiliquida y parcialmente disgregada de partículas de alimento y jugos gástricos, que pasa en pequeñísimas cantidades al duodeno (\downarrow).

onda de contracción descendente por el esófago

detalle de una glándula gástrica

corte a traves de

recubrimiento del duodeno
musculatura longitudinal vellosidades en las vellosidades cripta de
Lieberkuhn Lieborkum recubrimiento epitelia musculatura delgada musculatura circular musculatura longitudinal \qquad

duodeno, duodenum (n), parte componente del canal alimentario ($p .98$) situada entre el estómago (\uparrow) y el íleo (p. 102), que constituye la pequeña porción del intestino delgado (p. 102) y al cual llega el quimo (\uparrow) procedente del estómago. La digestión (p.98) continúa en el duodeno con ayuda de los jugos intestinales (p. 102) y, por otra parte, recibe secreciones (p. 106) del páncreas (p.102) y del hígado (p. 103). Está recubierto de vellosidades (p. 103) y de las glándulas (p. 87) que secretan los jugos intestinales.
quilo, chyle (n), linfa (p. 128) que contiene el resultado de la digestión (p.98). El líquido tiene aspecto lechoso debido a que contiene aceites y grasas emulsionados (p.26).
bilis, bile (n), secreción (p. 106) del hígado ($p .103$) que contiene algo de material residual del hígado y sales biliares que emulsiona las grasas, incrementa a actividad de ciertos enzimas (p.28), contribuye a la absorción (p.81) de algunas vitaminas (p.25) y es rica en bicarbonato sódico, que neutraliza los ácidos del estómago (\uparrow).
conducto biliar, bile duct, tubo a través del cual la bilis (\uparrow) pasa del hígado (p .103) al duodeno (\uparrow).
vesícula biliar, gall bladder, vesícula en forma de sa co que se extiende desde el conducto biliar (\uparrow) y que está situada dentro o cerca del hígado (p. 103). Funciona como un depósito para la bilis (\uparrow) cuando no es necesaria para fines digestivos (p.98) y después, mediante contracciones musculares (p. 143), se vacía en el duodeno (\uparrow) a través del conducto biliar.
jugo pancreático, pancreatic juice, solución (p. 118) en agua de sales alcalinas que neutralizan el ácido del estómago (p. 100) y enzimas (p. 28) para ayuda a la digestión (p.98).
páncreas, pancreas (n), glándula ($p .87$) que va co nectada al duodeno (p. 101) mediante un conducto y que produce jugo pancreático (\uparrow) e insulina (\downarrow)
islotes de Langerhans, islets of Langerhans, células presentes en el interior del páncreas (\uparrow) y que producen insulina (\downarrow)
insulina, insulin (n), hormona (p. 130) que controla el nivel de azúcar en la sangre ($p .90$), que si es esca sa provoca un aumento del nivel de azúcar, mientras que si está en exceso, desciende el nivel y causa un coma.
yeyuno, jejunum (n), parte del intestino delgado (\downarrow) situada entre el duodeno (p. 101) y el íleo (\downarrow).
intestino delgado, small intestine, tubo estrecho que forma parte del canal alimentario (p.98), situado en tre el estómago (p.100) y el colon (\downarrow). Es la zona principal de la digestión (p. 98) y absorción (p. 81) e incluye al duodeno (p. 101).
íleo, ileum (n), parte de mayor longitud, y por lo general espiralizada, del intestino delgado (\uparrow), situada entre el yeyuno (\uparrow) y el colon (\downarrow). Es muscula (p. 143) y mediante movimientos peristálticos (p. 100) hace que circulen por él las partículas de alimento. Su revestimiento está plegado y cubierto de gran número de vellosidades (\downarrow) que aumentan al área superficial para absorción (p. 81).
jugo intestinal, intestinal juice, secreción (p. 106) producida en las glándulas (p. 87) del intestino (\uparrow), que contiene una mezcla de enzimas (p .28) digestivas (p.98), tales como amilasa (p. 106) y sucrasa (p. 107).
glándulas de Brunner, Brunner's glands, glándulas ($p .87$) situadas profundamente en las paredes del duodeno (p. 101), que secretan (p. 106) jugos intestinales.
criptas de Lieberkuhn, crypts of Lieberkuhn, glándulas (p.87) presentes dentro de las paredes del intes tino delgado (\uparrow), que secretan los jugos intestinales.
apéndice, appendix (n), tubo de extremo cerrado que se encuentra en el extremo del intestino ciego (\downarrow) del ser humano.
ciego, caecum (n), rama de extremo cerrado del intestino situado en la unión de los intestinos grueso y delgado (\uparrow). Es muy grande e importante en la di gestión (p.98) de algunos mamíferos (p.80) no humanos
corte a través del intestino delgado (íleo)

pared

pared
muscular vello-vello-
sidades sidades

colon, colon (n), porción primera del intestino grueso Secreta (p. 106) mucus (p.99) y contiene los restos de los materiales alimenticios que no pueden ser digeridos (p. 98), así como los jugos digestivos. A par tir de este material se reabsorben agua y vitaminas que pasan a la sangre (p.90), dejando las heces (p.99), que son desplazadas hacia el recto (\downarrow).
recto, rectum (n), parte del intestino en la que se almacenan las heces (p.99), antes de su eliminación, a través del ano (\downarrow).
ano, anus (n), abertura posterior del canal alimentario (p.98), a través del cual pueden pasar las heces (p.99) a intervalos, y que está cerrada por un anillo muscular (p. 143) llamado esfínter anal (p. 127)
vellosidades, villi (n. pl.), proyecciones en forma de varilla que cubren el revestimiento del intestino del gado (\uparrow) para aumentar el área superficial destinada a absorción (p. 81)
hígado, liver (n), glándula (p. 87) situada cerca del es tómago (p .100) y que está conectada con el intestino delgado (\uparrow) por medio del conducto biliar (p. 101), a través del cual secreta (p. 106) bilis (p. 101) con fines de digestión (p.98). El hígado también elimina de la sangre (p.90) los glóbulos rojos dañados, almacena hierro, sintetiza vitamina (p. 25) A, almacena vitaminas A, D y B, sintetiza proteínas (p.21) de la sangre, extrae de la sangre las sustancias toxicas, sintetiza agentes que ayudan a la coagulacion (p. 129) de la sangre, disgrega el alcohol, almacena el exceso de carbohidratos (p. 17) y metaboliza (p. 26) las grasas
vena porta hepática, hepatic portal vein, sistema de venas (p. 127) que puede llevar sangre ($p .90$) rica en materiales nutritivos absorbidos (p. 81), tales como glucosa (p. 17), directamente del intestino (\uparrow) al hígado (\uparrow).
célula hepática, liver cell, cada una de las células que constituyen el hígado (\uparrow). Están en contacto directo con la sangre (p .90), de modo que el material se difunde rápidamente entre esta última y el hígado. Las celulas hepaticas tienen forma cubica con citoplasma granular (p. 10).
sistema reticuloendotelial, reticulo-endothelial system, sistema de células macrófagas (p.88) que está presente en el higado (\uparrow) y en otras partes del cuerpo y que está en contacto con la sangre (p.90) y otros fluidos. Estas células macrófagas son capaces de tragar cuerpos extraños y proteger así al cuerpo contra la infección, el daño y la enfermedad.
diente, tooth (n), estructura resistente y dura que crece en las mandibulas (\downarrow) de los animales vertebrados p. 74) y que se usa para desmenuzar mecánicamente materiales. Los dientes pueden estar especiazados en diferentes funciones en los distintos animales e incluso dentro del mismo animal.
dentición, dentition (n), tipo, disposición y número de dientes (\uparrow) de un animal
dentición heterodonta, heterodont dentition, condición en la que los dientes (\uparrow) de un animal, típicamente los mamíferos (p. 80), están diferenciados en diversas formas, tales como molares (\downarrow) y caninos (\downarrow), para realizar funciones diferentes, tales como moler la comida o matar la presa

dentición heterodonta

p. ej. carnivoros (perro)

dentición homodonta, homodont dentition, condición en la que todos los dientes (\uparrow) de un animal son idénticos
masticación, mastication (n), proceso que tiene lugar en la cavidad bucal (p.99), en el que el alimento es desmenuzado mecánicamente por la acción de los dientes (\uparrow) y la lengua, y es transformado en un bolo (p.99) para su deglución.
fórmula dentaria, dental formula, fórmula que indica, mediante letras y números, los tipos y cantidades de dientes (\uparrow) en las mandibulas (\downarrow) superior e inferior dientes (\uparrow) en ($\mathrm{B0}$). Por ejpmloperior e inferior de un mamifero (p.80). Por je \downarrow plo, la formula denaria de un ser humano sería: $i 2 / 2, \mathrm{c} 1 / 1, \mathrm{p} 2 / 2, \mathrm{~m} 3 / 3$, que indica que cada una de las mandíbulas superior e inferior tiene dos incisivos (\downarrow), un canino, (\downarrow), dos premolares (\downarrow) y tres molares (\downarrow) en cada lado de a mandíbula
incisivo, incisor (n), diente (\uparrow) en forma de escoplo, muy prominente en los roedores, que crece en la parte delantera de la mandíbula (\downarrow) de los mamíferos (p. 80) y que tiene una sola raíz y es de borde afilado, con el que se cortan porciones de comida

incisivo

canino, canine (n), diente (\uparrow) cónico y afilado, "colmilo", que crece entre los incisivos (\uparrow) y los premola res (\downarrow) y que los animales carnivoros (p. 109), tal como perros y gatos, usan para matar a sus presas.
diente carnicero, carnassial (n), diente (\uparrow para cortar carne que tienen los carnívoros (p. 109) terrestres (p. 219).
premolar, premolar (n), diente para triturar y moler que crece entre los caninos (\uparrow) y los molares (\downarrow) en los mamíferos (p 80). Los premolares suelen ser aserrados y tienen más de una raiz. Existen en la primera dentición (\uparrow) o "de leche"
molar, molar (n), diente (\uparrow) grande para triturar y moler, que crece en la parte posterior de la boca de los mamíferos (p. 80). Los molares son aserrados y tienen más de una raíz. No existen en la primera dentición (\uparrow.) o de «leche», y en los seres humanos hay cuatro que no aparecen hasta una cierta edad, y que se llaman "muelas del juicio"
esmalte, enamel (n), capa exterior dura de los dientes (\uparrow) de un vertebrado (p. 74). Se compone principalmente de las sales, carbonatos, fosfatos y fluoruros de calcio, unidas por pequeñas cantidades de compuestos (p.15) orgánicos
dentina, dentine (n) sustancia dura que constituye la gran mayoría de los dientes (\uparrow) de los mamíferos (p. 80). Es similar al hueso, pero tiene un mayor contenido mineral y carece de células.
cemento, cementum (n) , sustancia dura que cubre la raíz del diente (\uparrow) en los mamíferos (p. 80). Es similar al hueso, pero tiene un mayor contenido en minerales y carece de conductos de Havers (p.89).
cavidad pulpar, pulp cavity, sustancia, dentro del centro de un diente (\uparrow), que contiene los vasos sanquíneos (p . 127) y los nervios (p. 149) que nutren al diente, junto con tejido conjuntivo (p.88). Conecta al tejido (p.83) al que el diente va unido.
encía, gum (n), tejido (p.83) que rodea y sujeta las raíces de los dientes (\uparrow) y cubre los huesos de las mandíbulas (\downarrow). Contiene nervios (p. 149) y numerosos capilares sanguíneos (p. 127) que le confieren el característico color sonrosado cuando está sano. Se conoce también como gingiva.
mandíbula, jaw (n), hueso en el que se asientan los dientes (\uparrow). Los movimientos de la mandíbula, así como la dentición (\uparrow) de los diversos animales, están especializados para acciones diferentes; p. ej.: rasgar, romper o masticar (desmenuzar y moler).

secreción, secretion (n), material con una función especial en un organismo que es fabricado dentro de una célula, y que sale de ésta para realizar su función. secretar (v)
amilasa, amylase (n), enzima (p.28) que cataliza (p.28) la hidrólisis (p. 16) de los carbohidratos (p. 17), como, p. ej., el almidón (p. 18), en azúcares sencillos. Es secretada (\uparrow) en forma de saliva (p.99), así como en el páncreas (p. 102) y en el intestino delgado (p. 102).
renina, rennin (n), enzima (p .28) que coagula (p .128) la leche. Es secretada (\uparrow) por las glándulas gástricas (p. 87) del estómago (p. 100).
maltasa, maltase (n), enzima (p.28) que cataliza (p.28) la hidrólisis (p. 16) de la maltosa (p. 18) en dos moléculas de glucosa (p. 17). Es secretada (\uparrow) por el intestino delgado (p. 102).
lactasa, lactase (n), enzima (p. 28) que cataliza (p. 28) la hidrólisis (p .16) del disacárido (p .18) lactosa (p. 18) en glucosa (p. 17) y galactosa (p. 18). Es secretada (\uparrow) por el intestino delgado (p. 102).
sucrasa, sucrase (n), enzima ($p .28$) que cataliza ($p .28$) la hidrólisis (p.16) de la sucrosa ($p .18$) en glucosa (p. 17) y fructosa (p. 17). Es secretada (\uparrow) por el intestino delgado (p. 102). Se conoce también por el nombre de invertasa.
erepsina, erepsin (n), mezcla de enzimas (p.28) que cataliza (p . 28) la desintegración de las proteínas (p. 21) en aminoácidos (p. 21). Es secretada (\uparrow) por el intestino delgado (p. 102)
lipasa, lipase (n), enzima (p.28) que cataliza (p. 28) la hidrólisis ($p .16$) de las grasas en ácidos grasos (p. 20) y glicerol (p. 20). Es secretada (\uparrow) por el páncreas (p. 102)
enteroquinasa, enterokinase (n), enzima ($p .28$) que cataliza (p.28) la conversión de tripsinógeno (p. 108) en tripsina (\downarrow). Es secretada (\uparrow) por el intestino delgado (p. 102)
quimotripsina, chymotripsin (n), enzima (p.28) que cataliza (p.28) la conversión de las proteínas (p.21) en aminoácidos ($p .21$). Es secretada (\uparrow) por el páncreas (p. 102).
pepsina, pepsin (n), enzima (p. 28) que cataliza (p.28) la hidrólisis ($p .16$) de las proteínas ($p .21$) en polipéptidos (p.21) en solución (p.118) ácida. Es secretada (\uparrow) por el estómago (p. 100) como pepsinógeno (\downarrow).
pepsinógeno, pepsinogen (n), forma inactiva de la pepsina (\uparrow), que es secretada (\uparrow) por el estomago (p.100) y activada por el ácido clorhídrico (HCl).
gastrina, gastrin (n), hormona ($p .130$) que estimula la secreción (\uparrow) de ácido clorhídrico (HCl) y pepsina (\uparrow) en el estómago (p.100). Es activada por la presencia de materiales alimenticios.
tripsina, trypsin (n), enzima (p. 28) que cataliza (p. 28) la hidrólisis (p .16) de proteínas (p .21) en polipéptidos (p.21) y aminoácidos (p. 21). Es secretada (\uparrow) por el páncreas (p .102) como tripsinógeno (p .108).
tripsinógeno, trypsinogen (n), forma inactiva de la tripsina (p. 107), que es secretada (p. 106) por el páncreas ($p .102$) y convertida en tripsina por la enteroquinasa (p. 107).
peptidasa, peptidase (n), enzima (p.28) que cataliza (p .28) la hidrólisis (p .16) de los polipéptidos (p .21) en aminoácidos ($p .21$) rompiendo los enlaces ($p .21$) péptidos. Es secretada (p. 106) por el intestino delgado (p. 106).
nucleotidasa, nucleotidase (n), enzima (p. 28) que cataliza (p .28) la hidrólisis (p .16) de un nucoeótido (p. 22) en sus bases nitrogenadas (p. 22) componentes, pentosa (p.17) y ácido fosfórico (p.22). Es secretada (p. 106) por el intestino delgado (p. 102).
secretina, secretin (n), hormona ($p .130$) que estimula la secreción (p. 106) de bilis (p. 101) desde el hígado (p .103) y jugos digestivos (p .98) desde el páncreas (p. 102). Es secretada por el duodeno (p. 101)
pancreozimina, pancreozymin (n), hormona (p. 130) que estimula la liberación de jugos digestivos (p. 98) desde el páncreas (p. 102). Es secretada (p. 106) por el duodeno (p. 101)
micrófago, microphagous (adj.), dícese de un animal que se alimenta de partículas alimenticias diminutas comparadas con el tamaño del animal, y que debe alimentarse de forma continua para recibir suficientes nutrientes (p. 92)
filtrador, filter feeder, micrófago (\uparrow) que vive en el agua y que filtra las partículas de alimento suspendidas en el agua.
detritófago, deposit feeder, micrófago (\uparrow) que se alimenta de partículas depositadas y que a veces están mezcladas con la capa basal del entorno (p. 218) en el que el animal vive.
alimentación líquida, fluid feeder, tipo de alimentación de un micrófago (\uparrow) que ingiere ($p .98$) líquidos que contienen nutrientes (p.92) procedentes de animales o plantas vivos o recién muertos.
alimentación por pseudópodos, pseudopodial feeding, tipo de alimentación de un micrófago (\uparrow) en el que las celulas desarrollan temporalmente proyecciones digitales, pseudópodos (p.44), para englobar partículas de alimento.
alimentación mediante mucus, mucous feeding, tipo de alimentación de un micrófago (\uparrow) que atrapa las particulas de alimento en mucus (p. 99) secretado (p. 106) por el organismo, que es desplazado hacia la boca por la acción de unos cilios (p.12).
alimentación mediante setas, setous feeding, tipo de alimentación de un micrófago (\uparrow) que atrapa las partículas de alimento con setas (p. 65) y las desplazan hacia la boca por la acción de batido de cilios (ค. 12).
tipos de alimentación micrófaga

líquida p. ej.: mosquito

p. ej.: Daphnia

p. ej. : oppossum

herbívoro rumiante
p. ej.: gacela
macrófago, macrophagous (adj), dícese de un anima que se alimenta de partículas de alimento relativamente grandes y que, por lo tanto, en general, no necesita alimentarse de modo continuo
coprófago, coprophagous (adj.), dícese de un animal como p. ej., algunos roedores, que comen heces (p. 99), mejorando así la digestión (p.98) de la celuosa (p. 19) en un segundo paso.
omnivoro, omnivore (n), animal que se alimenta comiendo una dieta mixta de alimentos animales y vegetales.
carnívoro, carnivore (n), animal que se alimenta comiendo una dieta consistente principalmente en material animal. Los carnívoros pueden tener garras po derosas y dentición (p.104) adaptada a desgarrar la carne.
herbívoro, herbivore (n), animal que se alimenta comiendo una dieta consistente principalmente en material vegetal. Los herbívoros pueden tener dentición (p. 104) y digestión (p.98) especialmente adaptados a tratar los rigidos materiales vegetales.
rumiante, rumiant (n), grupo de herbivoros (\uparrow), que pertenece al orden de los artiodáctilos, y en los que el estómago (p. 100) es complejo e incluye una pan za. El alimento es tragado, pero sin ser masticado inicialmente, y pasa a la panza, donde es parcialmente digerido (p .98) y después regurgitado para ser masticado antes de ser tragado de nuevo y pa sar a la redecilla

tracto digestivo

de un ave

páncreas recto
molleja, gizzard (n), parte del canal alimentario (p.98) de ciertos animales. Tiene un recubrimiento muy rígido rodeado de musculos (p. 143) poderosos y en ella las partículas de alimento son desmenuzadas por accion molteadora de grava o piedras contra las paredes o contra espinas o «dientes» de la propia molleja.
buche, crop (n), parte del canal alimentario (p.98) de animales, tales como las aves, que puede estar in cluida en el esófago (p. 99), y en la que el alimento se almacena temporalmente y sufre una digestion (p. 98) parcial
planta carnívora, carnivorous plant, planta que com plementa su aporte de nutrientes capturando, por di versos medios, pequeños animales, tales como in sectos ($p .69$), y digiriéndolos ($p .98$) con enzimas (p. 28) secretados (p. 106) externamente.
parasitismo, parasitism (n), asociación (p. 227) en la que los individuos de una especie ($p .40$), los parasios, viven temporal o permanentemente sobre los individuos de otra especie, los huéspedes (\downarrow), obteniendo ventajas o nutrientes ($p .92$), o ambas cosas a la vez, y causando daños, e incluso la muerte, a los huéspedes.
parasitismo p. ej. infección de anquilostomas

jarásito, parasite (n), véase parasitismo (\uparrow)
endoparásito, endoparasite (n), parásito (\uparrow) que vive dentro del propio cuerpo del huésped (\downarrow); p. ej.. las tenias, que viven dentro del intestino de los vertebrados (p. 74).
ectoparásito, ectoparasite (n), parásito (\uparrow) que vive en la superficie del huésped (\downarrow) y que suele estar adaptado para fijarse a él y que a menudo se alimenta de liquidos. Los ectoparásitos suelen tener organos especiales para fijación al huésped.
parásito intercelular, intercellular parasite, endoparà sito (\uparrow) que vive dentro del material que hay entre las células del huésped (\downarrow).

ectoparásito p. ej.: Cuscuta sobre judía. La primera trepa sobre el tallo del huesped aborbe de suste haustoria

endoparásito Las hifas de hongo se introducen en las celulas del huesped y extraen nutrientes mediante hauslorios $\sqrt{1010}$
 células hifas huésped del hongo
intercelular, intercellular (adj.), situado entre células. parásito intracelular, intracellular parasite, endoparásito (\uparrow) que vive en el interior de las células del huésped (\downarrow).
huésped, host (n), especie ($p .40$) de organismos en una asociación (p.227), dentro o sobre los cuales vive un parásito (\uparrow), y alcanza madurez sexual, y que como resultado recibe daños o muere.
huésped secundario, secondary host, huésped (\uparrow) dentro del cual, o en cuyo interior, puede vivir temporalmente la fase juvenil o de reposo de un parásito (\uparrow). El parásito no alcanza la madurez sexual en el huésped secundario
transmisión, transmission (n), proceso por el cual una sustancia o un organismo son transportados de un lugar a otro; p. ej.: un parásito (\uparrow) es transmitido de un huésped (\uparrow) a otro, a veces a través de un huésped secundario (\uparrow), lo cual conlleva en ocasiones un riesgo considerable para el parásito. transmitir (v).
vector, vector (n), huésped secundario (\uparrow) que participa activamente en la transmisión (\uparrow) de un parásito (\uparrow) de un huésped (\uparrow) a otro o un organismo que transmite una enfermedad infecciosa de un individuo a otro sin resultar necesariamente afectado por esa enfermedad. Por ejemplo, los mosquitos chupadores de sangre, que transmiten un parásito causante de la malaria de un individus sobre el que se alimenta es un vector.

vector transmisor de enfermedad

respiración ', respiration (n), proceso en el cual se produce energía en una planta o en un animal mediante reacciones químicas. En la mayoría de los organismos esto se logra tomando oxígeno del medio (p. 218) y, después de transportarlo a las células haciéndolo reaccionar con moléculas de alimento que liberan dióxido de carbono, agua y energía, la cual queda fijada en ATP (p. 33) - respiración celular (p. 30).
respiración ${ }^{2}$, breathing (n), proceso de introducción de aire u otros gases en los órganos respiratorios (\uparrow) para el intercambio de gases (\downarrow).
cociente respiratorio, respiratory quotient $C R$, relación entre el volumen de dióxido de carbono producido por un organismo y el volumen de oxígeno usado durante el mismo período de respiración.

$$
\mathrm{CR}=\frac{\text { dióxido de carbono producido }}{\text { oxígeno consumido }}
$$

intercambio de gases, gas exchange, proceso que tiene lugar en la superficie respiratoria (\downarrow) en la que un gas, p. ej., oxigeno procedente del medio (p. 218), se difunde (p. 49) en el organismo debido a que la concentración del gas en el organismo es menor que en el medio, y otro gas, p. ej., dióxido de carbono, es liberado por el organismo al medio. En las plantas, el intercambio de gases se complica con las plantas, el intercambio de gases se complica con el que tiene tam
síntesis ($p .93$).
superficie respiratoria, respiratory surface, superficie de un órgano, tal como el pulmón (p.115), a través de la cual se produce el intercambio de gases (\uparrow) Suele estar muy plegada para incrementar el área superficial; es delgada y, en los organismos que viven en tierra, es húmeda.
inspiración, inspiration (n), proceso de introducción de aire en o a través de la superficie respiratoria (\uparrow) mediante acción muscular (p. 143). La presión dentro del órgano respiratorio es inferior a la reinante en el medio (p. 218), de modo que el aire penetra. Conocido también por inhalación (n)
expiración, expiration (n), proceso de expulsión de ai re y gases residuales fuera del órgano respiratorio (\uparrow) mediante acción muscular (p. 143). La presión dentro del órgano respiratorio aumenta, de modo que el aire sale. Conocido también con el nombre de exhalación (n)
aire, air (n), mezcla de gases que forma la atmósfera que rodea la Tierra. Está compuesta de aproximadamente el 78 por 100 de nitrógeno, el 21 por 100 de oxígeno, el 0,03 por 100 de dióxido de carbono y cantidades muy pequeñas de los llamados gases nobles, incluyendo argón, neón, etc. Incluye también vapor de agua
branquia, gill (n), parte de la superficie respiratoria (\uparrow) que se encuentra en la mayoría de los animales acuáticos, tales como los peces. Las branquias son proyecciones de la pared del cuerpo o del interior del tracto digestivo, y pueden ser muy grandes y complejas, en relación al animal, porque se apoyan en el agua. Son delgadas y están recorridas por gran número de vasos sanguíneos (p. 127), por lo que el intercambio de gases (\uparrow) entre el agua y la
sangre ($p .90$) suele ser muy eficaz en el animal.
dos tipos principales de movimientos del agua

filamento branquial, gill fiiament, cada uno de los numerosos lóbulos aplanados que forman una branquia y que aumentan su area superficial
hendidura branquial, gill slit, cada una de las aberturas a traves de la faringe (p.99) de los peces y de algunos anfibios (p .77) que conducen a las branquias (\uparrow)
opérculo ${ }^{\text {a }}$, operculum (n), placa ósea que recubre las hendiduras viscerales (p.74) y branquiales (\uparrow) de los peces óseos ($p .76$). Ayuda a bombear el agua sobre las branquias (\uparrow) para el intercambio de gases (\uparrow), mediante movimientos hacia dentro y hacia fuera.
sistema de intercambio a contracorriente, counter sistema de intercambio current exchange system, sistema que se da en las branquias (p.113) de los peces óseos (p.76), en el que el agua, que es bombeada hacia los filamentos (p. 113) branquiales, circula en dirección contraria al flujo de sangre (p.90) dentro de la branquia. El intercambio de gases (p.112) tiene lugar de modo continuo en toda la longitud de la branquia, debido a que los niveles de gases no alcanzan nunca el equilibrio.
sistema de intercambio en corrientes paralelas, $p a$
sistema de intercambio por contracorriente cavidad
 rallel current exchange system, sistema de intercam bio de gases ($p .112$) que se encuentra en las branquias de los peces cartilaginosos (p.76), en el que el flujo del agua y de la sangre (p.90) están en la misma dirección. Este sistema es menos eficaz que el de intercambio a contracorriente (\uparrow), ya que el equilibrio se alcanza en seguida.
bombeo bucal, buccal pump, parte de la acción de doble bombeo que hace que el agua que contiene oxígeno fluya sobre las branquias (p.113). Los músculos (p. 143) del suelo de la cavidad bucal (p. 99) la hacen subir y bajar según se cierra y abre, empujando el agua sobre las branquias y haciendo en trar más a través de la boca, respectivamente
bombeo opercular, opercular pump, parte de la doble acción de bombeo que hace que el aqua que contie ne oxígeno circule sobre las branquias (p.113). Unos músculos hacen que el opérculo ($p .113$) se abra hacia fuera cuando pasa agua por la boca.
sistema traqueal, tracheal system, sistema de intercambio de gases (p. 112) y transporte en los insectos, que va separado del sistema sanguíneo (p.90). El oxígeno pasa por tubos llamados tráqueas (\downarrow) y parte de él se difunde en los tejidos (p.83) corporales. Se difunde asimismo en el líquido de las traqueolas (\downarrow).
espiráculo, spiracle (n), abertura hacia la atmósfera de las tráqueas (\downarrow) de un insecto ($p .69$).

sistema traquea

distancia en la laminilla branquial

traqueola
llena de aire
traqueola
Ilena
tráquea, trachea (n), (1) cualesquiera de los numerosos tubos huecos de los insectos (p.69) que conducen desde los espiráculos (\uparrow) a los tejidos (p. 83) corporales; (2) tubos de los vertebrados (p. 74) terrestres que conduce desde la garganta hasta los bronquios (p .116)
traqueola, tracheole (n), cada uno de los tubos muy delgados en los que se ramifican las tráqueas (\uparrow) de los insectos (p.69). Penetran en los músculos (p. 143) y los órganos del cuerpo del insecto para permitir el intercambio de gases (p. 112).

pulmones, lungs (n. pl.), par de sacos elásticos de paredes delgadas que hay en el tórax (\downarrow) de los anfibios ($p .77$), reptiles ($p .78$), aves y mamíferos (p. 80), y que contiene las superficies respiratorias' (p. 112).
ventilación, ventilation (n), proceso en el que el aire contenido en el interior de los pulmones (\uparrow) es intercambiado con el de la atmósfera mediante la respiración ${ }^{2}$ (p.112) regular, para lo cual los movimientos musculares (p. 143) del tórax (\downarrow) varían su volumen y, por tanto, el de los pulmones. Durante la inspiración (p.112) aumenta el volumen de los pulmones y la presión atmosférica empuja aire hacia los mismos. Durante la espiración (p. 112), los músculos se relajan y disminuye el volumen de los pulmones en virtud de su elasticidad, de modo que el aire es expulsado.
tórax, thorax (n), (1) segmentos de los artrópodos (p. 67) situados entre la cabeza y el abdomen (p.116); (2) parte del cuerpo de los vertebrados (p. 74) que contiene el corazón (p. 124) y los pulmories (\uparrow). En los mamíferos (p.80) está separado del abdomen mediante el diafragma (p . 116) y protegido por la caja torácica, formada por las costillas.
cavidad torácica, thoracic cavity $=$ tórax (\uparrow) de los vertebrados (p. 74).
músculo intercostal, intercostal muscle, músculo p. 143) que conecta costillas adyacentes. Cuando los músculos intercostales externos se contraen, las costillas se mueven hacia arriba y hacia abajo, aumentando el volumen de la cavidad torácica (p.115) mentando el volumen de la cavidad torácica (p. 115) y de los pulmones (p. 115), empujando asi el aire hacia estos para la inspiracion (p. 112). Cuando los músculos intercostales internos se contraen disminuye el volumen de la cavidad to
tiene lugar la espiración (p. 112).
diafragma, diaphragm (n), capa de tejido muscular (p.143) que separa la cavidad torácica (p. 115) del abdomen (\downarrow) en los mamíferos (p. 80)
abdomen, abdomen (n), (1) segmentos de los artrópodos (p . 67) situados en la parte posterior del cuerpo; (2) parte del cuerpo de los vertebrados (p.74) que contiene los intestinos, el hígado, los riñones etcétera
cavidad pleural, pleural cavity, espacio estrecho y lleno de líquido que se encuentra entre las dos capas de las membrana pleural (\downarrow)
membrana pleural, pleural membrane, doble membrana que rodea los pulmones (p.115) y recubre la cavidad torácica (p. 115). Secreta (p. 106) líquidos para lubrificar las dos capas cuando los pulmones se expanden y contraen durante la respiración ${ }^{2}$ (p. 112).
laringe, larynx (n), estructura que se encuentra en la unión de la tráquea (p.115) y la faringe (p.99) que contiene las cuerdas vocales (\downarrow). Durante la deglucion, se cierra mediante la epiglotis (p.99)
cuerda vocal, vocal cord, cada uno de los pliegues del recubrimiento de la laringe (\uparrow) que producen sonidos cuando pasa sobre ellas una corriente de aire.
bronquio, bronchus (n), tubo hueco y largo en el que la tráquea ($p .115$) se divide y que penetra en los pulmones (p. 115).
bronquiolo, bronchiole (n), cada uno de los pequeños tubos en los que se dividen los bronquios (\uparrow) después de penetrar en los pulmones (p. 115). Los bronquiolos constituyen un "árbol» que termina en tubos llamados bronquiolos respiratorios. Éstos se dividen en conductos alveolares (o bronquiolos terminales) que dan lugar a los alvéolos (\downarrow)
alvéolo, alveolus (n), saco aéreo en forma de bolsa que se presenta, junto con otros más, en los extremos de los bronquiolos (\uparrow) y que contiene las superficies respiratorias (p. 112). Una red de capilares (p.127) cubre su delgado y elástico epitelio (p.87).

lujo cíclico, tidal flow sistema en el que la inspiración (p. 112) y la espiración (p. 112) tienen lugar a través de los mismos conductos, de modo que el aire pasa dos veces por cada parte de la superficie respiratoria (p. 112). Esto es menos eficaz que un sistema en el que hay un flujo continuo, como el que tiene lugar a través de las branquias (p. 113) de un pez.
volumen respiratorio, tidal volume, volumen de aire que es inspirado (p. 112) o espirado (p.112) durante a respiración (p. 112) normal. Es considerablemente menos que la capacidad pulmonar (\downarrow)
indice de ventilación, ventilation rate, velocidad por minuto, a la cual el volumen total de aire es espirado p. 112) o inspirado (p. 112)
volumen residual, residual volume, volumen de aire que queda siempre dentro de los alveolos (\uparrow), debido a que el tórax (p.115) es incapaz de contraerse completamente. Intercambia oxígeno y dióxido de carbono con el aire respiratorio
capacidad vital, vital capacity, cantidad total de aire que puede ser inspirada (p. 112) y espirada (p. 112) durante una actividad vigorosa.
olumen de reserva, reserve volume, diferencia de volumen entre la capacidad pulmonar (\downarrow) total y la capacidad vital (\uparrow)
capacidad pulmonar, lung capacity, volumen total de aire que puede ser contenido en los pulmones cuando están totalmente inflados.
aclimatización, acclimatization (n), período de tiempo que tarda la respiración (p.112) de un organismo en habituarse a la presión parcial reducida de oxígeno que puede haber en altitudes elevadas; p. ej.: donde la presión atmosférica se reduce
centro respiratorio, respiratory centre, parte del bulbo raquideo (p . 156) que controla la velocidad de respiración en respuesta a los niveles de dióxido de carbono disuelto en la corriente sanguínea (p.90)
débito de oxígeno, oxygen debt, déficit en la cantidad de oxígeno disponible para la respiración (p.112) durante la actividad violenta, de modo que incluso si la actividad cesa, la respiración ${ }^{2}$ (p.112) continúa con una velocidad elevada hasta que ha desaparecido el débito de oxígeno. En los músculos (p.143) se forma ácido láctico a partir de la fermentación del ácido láctico
ósmosis, osmosis (n), proceso mediante el cual el agua pasa a través de una membrana semipermeable (\downarrow), desde una solución (\downarrow) de baja concentración de sales, a otra de alta concentración, diluyéndola La ósmosis continuará hasta que las concendola. La traciones de las dos soluciones se equilibren. En los seres vivos, la ósmosis puede tener lugar a traves de membranas (p. 14); p. ej.: tonoplasto (p. 11) o plasmalema ($p .14$) en cualquier dirección. En las plantas, las paredes celulares (p.8) son elásticas, de modo que pueden contener soluciones de concentración más elevadas cuando cesa la ósmosis. osmótico (adj.).

agua pura 0
agua pura
solución
hipotónica con
una alta
presión osmótica

solución

potencial osmótico, osmotic potential, tendencia de las moléculas de agua a difundirse (\downarrow) a través de una membrana semipermeable (\downarrow) desde una soluuna membrana semipermeable (\downarrow) desde una solu-
ción (\downarrow) de baja concentración de soluto a otra con ción (\downarrow) de baja concentración de soluto a otra con
concentración alta de soluto, hasta alcanzar el equiliconc
membrana semipermeable, semipermeable membra ne, membrana (p. 14), tal como un tonoplasto (p. 11) o plasmalema (p .14), con poros (p .120) microscópi$\cos (p .9)$, a través de la cual pasan las moléculas pequeñas; p. ej.: agua, pero no las grandes, como sucrosa (p. 18).
solución, solution (n), líquido (el disolvente) con sustancias (el soluto) disueltas en él. Se dice que las sustancias que se disuelven son solubles y las que no insolubles.
solución isotónica, isotonic solution, solución (\uparrow) en la que el potencial osmótico (\uparrow) es el mismo que el de otra solución, de modo que ninguna de ellas gana o pierde agua por ósmosis (\uparrow) a través de una membrana semipermeable (\uparrow).
hipotónica, hypotonic (adj.), dícese de una solución (\uparrow) de un sistema osmótico (\uparrow) que es más diluida que otra.
hipertónica, hypertonic (adj.), dícese de una solución (\uparrow) de un sistema osmótico (\uparrow) que es más concentrada que otra
difusión, diffusion (n), proceso en el cual las moléculas se desplazan de una zona de alta concentración a otra de baja concentración. La ósmosis (\uparrow) es un tipo especial de difusión limitada al movimiento de moléculas de agua.
déficit de presión de difusión, diffusion pressure deficit, situación que existe entre dos soluciones (\uparrow) a cada lado de una membrana semipermeable (\uparrow), en que una sustancia ha siđo añadida a una de las soluciones que no puede pasar a través de la membrana e impide el paso de agua desde esa solución Cuanto mayor es la concentración de la solución mayor es el déficit de presión de difusión y menor el potencial osmótico (\uparrow) de esa solución.
turgencia, turgor (n), condición en una célula vegetal en la que se ha difundido (\uparrow) agua en la vacuola (p. 11) mediante ósmosis (\uparrow), haciendo que la célula se hinche, ya que el líquido celular estaba a un menor potencial osmótico (\uparrow) que el del entorno. turgente, turgid (adj.), dícese de una célula vegetal en la que la turgencia (\uparrow), a la que se resiste la elasticidad de la pared celular (p.8), casi la hace estallar y no puede penetrar más agua en su interior. La turgencia confiere soporte a la planta.
célula turgente
la concentración
del 'plasma
superior a la del fluido extracelular
el agua se
difunde en la célula hasta que la presion celular impide un mayor aumento

presión de turgencia, turgor pressure, presión ejercida por la pared celular (p. 8) durante la ósmosis (\uparrow en la vacuola ($p .11$) de una célula vegetal.
plasmólisis, plasmolysis (n), pérdida de agua, y, por tanto, turgencia (\uparrow), de una célula vegetal que está rodeada de una solución (\uparrow) más concentrada. EI citoplasma (p. 10) pierde volumen y se contrae y separa de la pared celular (p.8), provocando marchita miento.
fláccido, flaccid (adj.), dícese de un tejido (p. 83) vegetal débil o blando.
marchitamiento, wilting (n), caída de las hojas y de los tallos verdes.
estoma, stoma (n), cada uno de los numerosos pequeños agujeros o poros (\downarrow) de las hojas (principalmente) y de los tallos de las plantas, a través de los cuales se produce el intercambio de gases y vapor de agua. Son capaces de abrirse y cerrarse por medio de células oclusivas (\downarrow) circundantes.
poro, pore (n), abertura pequeña en una superficie. célula oclusiva, guard cell, cada una del par de células especiales, en forma de media luna, que rodean los estomas (\uparrow) y que permiten a éstos abrirse o cerrarse por ósmosis (p. 118) en respuesta a la intensidad de la luz. Cuando las células oclusivas están turgentes ($p .119$), el estoma está abierto.
estomas
vista de la superficie de la hoja células epidérmicas estoma

poro células oclusivas
cámara subestomática, substomatal chamber, espacio situado por debajo del estoma (\uparrow).
transpiración, transpiration (n), pérdida de agua en una planta a través de los estomas (\uparrow). Estos últimos la controlan. Produce un flujo [corriente de transpiración (p. 122)] de agua a través de la planta y tiene también un efecto refrescante, ya que el agua se evapora de la superficie de la planta. Resulta afectada por la temperatura, la humedad relativa (\downarrow) y la velocidad del viento. Cuando aumenta la temperatura del aire y de la hoja, también lo hace la velocidad de transpiración. Cuanto menor es la humedad de la atmósfera, mayor es la velocidad de transpiración. El aumento de la velocidad dei viento suele incrementar la velocidad de transpiración, siempre que no sea mayor el efecto de enfriamiento.

gutación humedad alta
gotas de
agua exudadas ar los hidatodos (extremos de los nervios en el margen de la hoja) movimiento del agua desde el suelo al centro de la raíz
célula de
vía apoplástica

```
 vía simplástica
 vía simplástica
vias simpiástica y apoplástica plasmodesmos

humedad relativa, relative humidity, porcentaje de vapor de agua en suspensión contenido en el aire Cuando la humedad relativa es del 100 por 100, el aire está saturado.
gutación, guttation ( \(n\) ), proceso que tiene lugar en algunas plantas en condiciones de humedad relativa \((\uparrow)\) alta, en el que se secreta agua de manera activa en forma líquida a través de estructuras especiales llamadas hidatodos (se ençuentran en el extremo de las venas de las hojas), en lugar de perderse como vapor de agua. Esto se produce debido a la absorción (p.81) osmótica (p.118) de agua en las raíces.
presión atmósférica, atmospheric pressure, presión que sobre la superficie de la Tierra ejerce el peso del aire de la atmósfera.
vía vacuolar, vacuolar pathway, camino para el paso del agua por ósmosis (p. 118). Las vacuolas (p. 11) contienen un fluido con un potencial osmótico (p. 118) inferior al del agua, de modo que la vacuola se hincha de agua hasta quedar turgente (p. 119).
vía simplástica, symplast pathway, camino para el transporte de agua, a través de una planta por difusión ( \(p .119\) ), desde una célula a la siguiente, a través del citoplasma ( \(p .10\) ), por los filamentos Ilamados plasmodesmos (p.15) que unen las células adyacentes.
vía apoplástica, apoplast pathway, camino para el transporte de agua en una planta, en particular a través del córtex de las raíces (p.86), por difusión (p. 119) a lo largo de las paredes (p. 8) de las células adyacentes.
flujo de masas, mass flow, hipótesis (p. 235) desarrollada por Munch en 1930 para explicar el transporte de sustancias en el floema (p. 84). El flujo de masas tiene lugar en la luz de los tubos cribosos (p.84) cuando el agua es absorbida por ósmosis (p.118) en las regiones fotosintetizadoras (p. 93) activas, donde la concentración es alta, y fluye hacia zonas donde se pierde agua al ser usados y almacenados los productos de la fotosíntesis y, por consiguiente, la concentración es baja. El agua es transportada en dirección opuesta en el xilema (p.84) a través de corrientes de transpiración.
presión radical, root pressure, presión existente en una planta que hace que el agua sea transportada desde las raíces al xilema ( \(p .84\) ) en virtud del gradiente osmótico (p.118) de la planta.
banda de Caspari, Casparian strip, capa impermeable gruesa que cubre las paredes celulares (p.8) transversales y radiales de la endodermis (p. 86), de modo que el agua que es transportada desde el córtex de la raíz ( p .86 ) al xilema ( p .84 ) debe pasar a través del citoplasma ( p .10 ) de las células de la endodermis.
corriente de transpiración, transpiration stream, flujo continuo de agua que tiene lugar en una planta a través del xilema (p. 84) cuando el agua se pierde hacia la atmósfera mediante la transpiración (p. 120) y es tomada del suelo a través de los pelos de la raíz (p.81).
teoría de la cohesión, cohesion theory, teoría (p. 235) que explica que una columna de agua puede ser mantenida unida mediante fuerzas moleculares de atracción, permitiendo el ascenso de la savia por un tallo alto sin caer o romperse. En la columna de agua existe una tensión, por cuanto que el agua sale de los vasos del xilema ( \(p .84\) ) por ósmosis ( \(p\). 118). De manera similar ocurre con las fuerzas moleculares de adhesión que hacen que el agua se adhiera a otras sustancias, ascendiendo así por capilaridad a o largo de un tallo.

\section*{representación de dos teorías sobre el transport}
fluio de savia
ipotesis de la cadena transcelular fibrillas


\section*{hipótesis}

\section*{electroosmótica fuerza}

sistema circulatorio doble de un mamfiero

sistema circulatorio, circulatory system, sistema en e que los materiales pueden ser transportados por to do el cuerpo de un animal, necesario porque el volu men del animal suele ser demasiado grande para que el transporte se realice por difusión (p. 119).
circulación sencilla, single circulation, sistema circulatorio ( \(\uparrow\) ), tal como el que existe en los peces, en el que la sangre ( p .90 ) pasa a través del corazón (p.124) una vez en cada circuito completo
circulación doble, double circulation, sistema circulatorio ( \(\uparrow\) ), tal como el que existe en las aves y los mamíferos ( \(p .80\) ), en el que la sangre ( \(p .90\) ) pasa a través del corazón (p.124) dos veces en cada circuito completo y mantiene así la presión sanguínea del sistema. En este sistema, el corazón está dividido en lado derecho e izquierdo.
sistema circulatorio abierto, open circulatory system sistema circulatorio (p. 123); p. ej.: en artropodo (p. 67), en el que la sangre (p.90) está libre en los espacios corporales durante gran parte de la circulación. Los órganos están en el hemocele (p. 68) y la sangre procedente de las arterias (p. 127) baña los tejidos (p.83) principales antes de difundirse hacia los extremos abiertos de las venas (p. 127). No hay capilares (p. 127)
sistema circulatorio cerrado, closed circulatory sys tem, sistema circulatorio (p. 123); p. ej.: en los verte brados (p. 74), en el que la sangre (p.90) está contenida dentro de vasos (p. 127) durante gran parte de su circulación.
corazón, heart (n), órgano muscular (p. 143) o vaso (p. 127) sanguíneo (p. 90) especializado que bombea sangre en el sistema circulatorio (p. 123)

aurícula, atrium ( \(n\) ), región de la cámara del corazón \((\uparrow)\) que recibe la sangre (p.90). El corazón de un mamífero (p.80) tiene una aurícula izquierda y otra derecha, que son los receptores de la sangre oxigenada ( p . 126) procedente de los pulmones ( p . 115) y de la sangre desoxigenada ( p .126 ) procedente del cuerpo, respectivamente
ventrículo, ventricle ( \(n\) ), región muscular ( \(p .143\) ) o cámara del corazón ( \(\uparrow\) ) que mediante contracciones regulares bombea sangre ( p .90 ). El corazón de un mamífero ( p .80 ) tiene un ventrículo izquierdo y otro derecho que bombean sangre oxigenada ( \(p\). 126) al cuerpo y desoxigenada ( p .126 ) a los pulmones, respectivamente.
ciclo cardíaco, cardiac cycle, ciclo en el que, mediante contracciones musculares ( \(p\). 143) rítmicas, la te contracciones musculares ( \(p .90\) ) fluye hacia las auriculas ( \(\uparrow\) ) del corazón \((\uparrow)\) y es bombeada fuera de los ventrículos \((\uparrow)\).
sístole, systole ( \(n\) ), fase de contracción del ciclo cardíacol \((\uparrow)\). diástole, diastole ( \(n\) ), fase de relajación del ciclo cardiaco \((\uparrow)\).
sistema circulatorio abierto

posición del corazón en
varios invertebrados

lombriz de tierra

crustáceos

latido cardíaco acción del corazón

as aurículas se contraen, los ventrículos se relajan

los ventrículos se contraen las aurículas se relaian
válvula, valve ( \(n\) ), aleta o cavidad que sólo permite e flujo de un líquido; \(p\). ej.: sangre (p.90), en una di rección
válvula auriculoventricular, atrioventricular valve, vál vula que separa el ventrículo ( \(\uparrow\) ) izquierdo de la aurí cula ( \(\uparrow\) ), evitando que la sangre (p. 90) fluya hacia atrás, a la aurícula, en el cierre de las dos aletas membranosas (p. 14). Se conoce también como vál vula mitral, mitral valve
válvula bicúspide, bicuspid valve \(=\) válvula auriculo ventricular ( \(\uparrow\) ).
válvula tricúspide, tricuspid valve, válvula que separa el ventrículo ( \(\uparrow\) ) derecho y la aurícula
cordones tendinosos, tendinous cords, tejido conjun tivo (p.88) resistente del corazón ( \(\uparrow\) ) que evita durante la contracción que las válvulas auriculoventricular \((\uparrow)\) y tricúspide \((\uparrow)\) se vuelvan hacia dentro
válvulas semilunares, pocket valves, válvulas situadas entre los ventriculos ( \(\uparrow\) ) y la arteria pulmonar (p. 128) y la aorta ( \(\downarrow\) ) que, cuando se cierran, evitan el reflujo de la sangre a los ventrículos
válvulas sigmoideas \(=\) válvulas semilunares
aorta, aorta ( \(n\) ), arteria (p. 127) principal que transporta sangre ( p .90 ) oxigenada ( p .126 ) desde el corazón ( \(\uparrow\) ).
músculo miogénico, myogenic muscle ( \(n\) ), músculo (p. 143), el músculo cardíaco o miocardio (p. 143) que puede contraerse sin estimulacion nerviosa (p. 149), aunque su velocidad de contracción viene controlada por tal estimulación
ritmo cardiaco, heartbeat ( \(n\) ), contracción rítmica de músculo miogénico ( \(\uparrow\) ) del corazón ( \(\uparrow\) ).
nudo senoauricular, sino-atrial node, grupo de células de la aurícula ( \(\uparrow\) ) derecha que son responsables del mantenimiento del ritmo cardíaco ( \(\uparrow\) ) mediante estimulación nerviosa (p.149) transmitida por él.
nudo auriculoventricular, atrio-ventricular node, segundo grupo de células de la aurícula ( \(\uparrow\) ) dere cha que recibe la estimulación nerviosa (p. 149) procedente del nudo senoauricular ( \(\uparrow\) ).
tejido de Purkinje, Purkinje tissue, tejido (p. 83) nervioso (p. 149) que conduce los estímulos nerviosos desde el nudo senoauricular ( \(\uparrow\) ) hasta la punta del ventrículo ( \(\uparrow\) ), garantizando que el ventrículo se contrae desde su vértice hacia atrás para expulsar la sangre ( p .90 ) a través de las arterias ( p .127 ).
nervio simpático, sympathetic nerve, nervio (p. 149) motor que surge del nervio espinal y descarga adrenalina (p. 152) en el miocardio (p. 143) para aumentar el ritmo cardíaco ( \(\uparrow\) )

\section*{cambios en volumen y presión durant} el ciclo cardíaco de un mamífero

nervio vago, vagus nerve, nervio (p. 149) motor que surge del bulbo raquídeo (p. 156) y descarga acetilcolina (p. 152) en el miocardio (p. 143) para reducir el ritmo cardíaco (p. 125).
pulso, pulse ( \(n\) ), onda de presión sanguínea ( \(p .90\) ) creciente que pasa a través de las arterias \((\downarrow)\) cuando el ventrículo ( \(p .124\) ) izquierdo bombea su contenido en la aorta (p. 125).
pigmento, pigment ( \(n\) ), sustancia coloreada. Por ejemplo, la mioglobina es una variedad de hemoglobina ( \(\downarrow\) ) que se encuentra en las células musculares (p. 143) y la clorocruorina es un pigmento respiratorio que contiene hierro y que se encuentra en la sangre ( \(p .90\) ) de algunos poliquetos ( \(p .65\) ). Véase también clorofila (p.12)
hemoglobina, haemoglobin ( \(n\) ), pigmento ( \(\uparrow\) ) rojo y proteína (p.21) que contienen hierro, que se encuentra en el citoplasma ( \(p .10\) ) de los glóbulos rojos (p. 91) de los vertebrados (p. 74). Se combina fácilmente con el oxígeno para formar oxihemoglobina y de esta manera el oxigeno es transportado a los tejidos (p.83) desde los pulmones (p. 115)
oxihemoglobina, oxyhaemoglobin ( \(n\) ), véase hemoglobina ( \(\uparrow\) ).
oxigenado, oxygenated (adj.), que contiene o transporta oxígeno
desoxigenado, deoxygenated (adj.), que no contiene oxígeno ( \(\uparrow\) ).
presión aórtica
presión auricular
presión ventricular
modo de excitación que acompaña a la contracción del corazón
nervio vago (decelera al corazón)
nervio simpático (acelera al


tejido
Purkinje
hemocianina, haemocyanin ( \(n\) ), pigmento ( \(\uparrow\) ) azul y proteína (p.21) que contiene cobre, que se encuentra en el plasma (p.90) de ciertos invertebrados (p. 75). Se combina también con el oxígeno para transportarlo a los tejidos (p. 83).
efecto Bohr, Bohr effect, efecto de aumento de la probabilidad de disociación del oxígeno de la oxihemoglobina ( \(\uparrow\) ) cuando aumenta el nivel de dióxido de carbono, de modo que con mayor actividad, más oxígeno pasa a los tejidos corporales (p. 83)
sistema vascular, vascular system, sistema de vasos \((\downarrow)\) que transportan fluidos a través del cuerpo de un organismo
capilar, capillary ( \(n\) ), cualesquiera de los numerosos y diminutos vasos sanguíneos ( \(\downarrow\) ) que forman una red a través del cuerpo. Presentan una gran área superficial y son de paredes delgadas para facilitar el intercambio de gases ( \(p .112\) )
esfínter, sphincter muscle, cualesquiera de los músculos (p. 143) que, por contracción, cierran cualesquiera de los vasos ( \(\downarrow\) ), órganos o tubos huecos de un organismo.
vaso a, vessel ( \(n\) ), canal o conducto con paredes; \(p\) ej.: la sangre (p.90) fluye a través de un vaso sanguíneo.
vena \({ }^{\text {a }}\), vein \((n)\), cualquiera de los numerosos vasos \((\uparrow)\) tubulares que transportan sangre ( \(p .90\) ) de regreso al corazon (p. 124). Las venas tienen diámetro bastante grande, pero sus paredes son más delgadas que las de las arterias ( \(\downarrow\) ) y la sangre es llevada a una presión relativamente baja. Las venas tienen válvulas semilunares ( p .125 ) que garantizan que la sangre sólo circula hacia el corazón.
vénula, venule ( \(n\) ), vaso ( \(\uparrow\) ) sanguíneo pequeño que recibe sangre de los capilares ( \(\uparrow\) ) y que después confluye con otras venulas para dar origen a las venas ( \(\uparrow\) ).
arteria, artery ( \(n\) ), cualesquiera de los vasos ( \(\uparrow\) ) tubu lares que transportan sangre (p.90) desde el corazón (p. 124). Tienen menor diámetro que las venas \((\uparrow)\), pero las paredes son más gruesas y elásticas, y la sangre es llevada a presión relativamente alta Con la excepción de la aorta (p. 125) y de la arteria pulmonar (p.128), todas las restantes arterias carecen de válvulas semilunares (p. 125)
arteriola, arteriole ( \(n\) ), arteria ( \(\uparrow\) ) pequeña
seno, sinus ( \(n\) ), cualquier espacio o cámara, como, \(p\) el., el seno venoso, que se encuentra en una camara situada dentro del corazón (p. 124) de algunos vertebrados (p.74); especialmente de los anfibios (p.77), y está dispuesto entre las venas \((\uparrow)\) y la aurícula (p. 124).
circulación pulmonar, pulmonar circulation, parte de la circulación doble (p.123) en la que la sangre (p. 90) desoxigenada (p. 126) es bombeada desde el corazón ( \(p .124\) ) a los pulmones ( \(p .115\) ).
arteria pulmonar, pulmonary artery, arteria (p. 127) que transporta sangre (p.90) desoxigenada (p. 126) bombeada desde el corazón (p. 124) a los pulmones (p. 115)
vena pulmonar, pulmonary vein, vena ( p .127 ) que transporta sangre oxigenada ( \(p .126\) ) desde los pulmones ( \(p .115\) ) de regreso al corazón ( \(p .124\) ).
circulación sistémica, systemic circulation, parte de la circulación doble (p.123) en la que la sangre (p.90) es bombeada desde el corazón (p. 124) a través del cuerpo del animal.
puente arteriovenoso, arterio-venous shunt vessel pequeño vaso ( \(p .127\) ) sanguíneo que interconecta los capilares ( p .127 ) y transporta sangre ( p .90 ) desde las arterias ( \(p\). 127) a las venas ( \(p\). 127) y, por consiguiente, regula la cantidad de sangre que penetra en los capilares
linfa, lymph ( \(n\) ), fluido lechoso o incoloro que pasa de los tejidos (p.83) a los vasos linfáticos \((\downarrow)\) y no es reabsorbido ( p .81 ) en los capilares ( p .127 ). Es similar al fluido tisular y contiene bacterias (p. 42), pero no moléculas grandes de proteína (p.21)
vaso linfático, lymphatic vessel, cualesquiera de los numerosos vasos ( p . 127) parecidos a venas ( p .127 ) que transportan linfa ( \(\uparrow\) ) desde los tejidos (p. 83) a las grandes venas que entran en el corazón (p. 124). (p. 124)
nódulo linfático, lymph node, engrosamiento del vaso linfático \((\uparrow)\), especialmente en áreas tales como la ingle o la axila, que contiene en especial glóbulos blancos (p. 91) conocidos como macrófagos (p.88).
plaqueta, platelet ( \(n\) ), cualesquiera de los fragmentos de las células presentes en el plasma ( \(p .90\) ) sanguíneo (p. 90) que se forman en la médula ósea (p. 90) y que impiden las hemorragias al agregarse en el punto de una herida y secretar una hormona (p. 130) que estimula la coagulación \((\downarrow)\) de la sangre. Liberan también otras sustancias que hacen que los vasos (p. 127) sanguíneos se contraigan, de modo que impiden la hemorragia capilar (p. 127).
coagular, coagulate \((v)=\) cuajar \((\downarrow)\)
anticoagulante, anticoagulant ( \(n\) ), sustancia que detiene la coagulación ( \(\uparrow\) ) de la sangre ( p .90 ).
cuajar, clot (v), dícese de líquidos que se vuelven sólidos; p. ej.: la sangre (p. 90) se coagula en contacto con el aire. Véase también coagular ( \(\uparrow\) ).
grupos sanguíneos, blood groups, en los seres humanos existe un sistema de alelos (p. 205) múltiples que dan lugar a cuatro grupos diferentes de sangre con distintos antígenos ( p .234 ) o proteínas ( p .21 ) en la superficie de los glóbulos rojos (p. 91). El ale lo A , el alelo B y el alelo 0 (que no produce antígenos) pueden combinarse para dar cualesquiera de las siguientes combinaciones de grupos sanguí neos: \(A A, A 0, B B, B 0, A B\) ó 00 . Los alelos \(A\) y \(B\) son dominantes ( p .197 ) con respecto a 0 , por lo que hay cuatro grupos: \(\mathrm{A}, \mathrm{B}, \mathrm{O}\) y AB
factor rhesus, rhesus factor, antígeno (p. 234) presente en la sangre ( \(\mathrm{p}, 90\) ) del macaco rhesus y en la mayoría, aunque no en todos, de los seres humanos Durante el embarazo (p. 195) o después de una transfusión de sangre que contiene factor rhesus ( \(\mathrm{R} h+\) ), en sangre que carece de èl ( \(\mathrm{RH}-\) ), puede producirse la desintegración de los glóbulos rojos (p. 91), con graves resultados.

\section*{los cuatro grupos sanguineos principa}


-antígeno \(\mathbf{A}=\) antígeno B anticuerpo A anticuerpo B
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \begin{tabular}{l}
grupo
sanguineo \\
sanguineo
\end{tabular} & antigenos en globulos rojos & \begin{tabular}{l}
antigenos \\
en suero
\end{tabular} & puede recibir tipo de sangre & puede donar tipo de sangre \\
\hline & A & A & B & \[
\begin{aligned}
& \text { grupos } \\
& \text { A y } 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { grupos } \\
& A \text { y AB }
\end{aligned}
\] \\
\hline & B & B & A & \[
\begin{aligned}
& \text { grupos } \\
& 8 \text { y } 0
\end{aligned}
\] & \[
\begin{aligned}
& \text { grupos } \\
& \text { B y AB }
\end{aligned}
\] \\
\hline receptores universales & AB & A y B & ninguno & \[
\begin{gathered}
\text { grupos } A, B, \\
A B \text { y } 0
\end{gathered}
\] & grupo AB \\
\hline donantes universales & 0 & ninguno & A y B & sólo grupo 0 & \[
\begin{gathered}
\text { grupos } A, B, \\
A B \text { y } \mathbf{D}
\end{gathered}
\] \\
\hline
\end{tabular}

universales
homestasia, homeostasis (n), mantenimiento de condiciones internas constantes dentro de un organismo, permitiendo así a las células funcionar más eficazmente, a pesar de los cambios que puedan producirse en el medio externo al organismo (p.218).
sistema endocrino, endocrine system, sistema de glándulas (p. 87) en los animales que produce hormonas ( \(\downarrow\) ). Este sistema y el sistema nervioso (p. 149) se combinan para controlar las funciones del cuerpo
glándula endocrina, endocrine gland, glándula (p. 87) que produce hormonas ( \(\downarrow\) )
hormona, hormone ( \(n\) ), sustancia fabricada en cantidades muy pequeñas en una parte del organismo y que es transportada a otra parte, donde produce un efecto. (1) En las plantas, a las hormonas se las denomina sustancias de crecimiento (p. 138); (2) En los animales, las hormonas son secretadas (p. 106) por las glándulas endocrinas ( \(\uparrow\) ) a la corriente sanguínea (p.90), por donde circulan hasta llegar a su lugar de destino.
glándulas suprarrenales, adrenal glands, en los mamíferos (p.80), par de glándulas (p.87) endocrinas \((\uparrow)\) situadas cerca de los riñones (p. 136). Están divididas en dos partes: la médula, parte interna que secreta (p. 106) adrenalina (p. 152) y noradrenalina (p. 152), y la corteza, parte externa que secreta varias hormonas ( \(\uparrow\) ) esteroides (p.21).
homeotermo, homoiothermic (adj.), dícese de un organismo que mantiene su temperatura corporal a un nivel constante en circunstancias externas cambiantes. Estos organismos, incluidos los mamíferos (p. 80), p. ej., suelen denominarse de «sangre caliente», debido a que su temperatura corporal suele ser superior al entorno
endotermo, endothermic (adj.) = homeotermo ( \(\uparrow\) ).
poiquilotermo, poikilothermic (adj.), dícese de un organismo cuya temperatura corporal varía con la de entorno (p.218) y aproximadamente es igual a ésta estos organismos, que no incluyen las aves y los ma miferos (p. 80), suelen denominarse de «sangre fría", aunque su temperatura corporal puede ser más alta o más baja que la del entorno, dependien do de factores tales como la velocidad del viento ola radiación solar \((\downarrow)\). Cuando su temperatura corporal desciende, baja su metabolismo.
exotermo, exothermic (adj.) = poiquilotermo ( \(\uparrow\) ).

radiacion, radiation ( \(n\) ), transferencia del calor de un objeto caliente, tal como el sol, a otro más frío, como p. ej., la tierra o el cuerpo de un organismo, a través del espacio sin incrementar la temperatura en éste.
evaporación, evaporation ( \(n\) ), transformación de un líquido en vapor o gas, que tiene lugar cuando el líquido es calentado a una temperatura igual o algo inferior a su punto de ebullición
conducción, conduction ( \(n\) ), transferencia de calor a través de un cuerpo sólido.
convección, convection ( \(n\) ), transferencia de calor en un fluido, cuando su porción calentada asciende y la enfriada desciende
pelo, hair ( \(n\) ), excrecencia mono o pluricelular de la dermis \((\downarrow)\) de un mamífero (p. 80), formada por ma terial muerto, y que incluye la sustancia queratina Entre otras funciones, una cubierta de pelo aisla e cuerpo de los mamíferos contra el exceso de calentamiento o enfriamiento, especialmente si entre ellos atrapan una capa de aire aislante alrededor del cuerpo. El pelo es una de las características de los mamíferos.
piel, skin ( \(n\) ), cubierta externa de un organismo que le aísla del calentamiento o enfriamiento excesivo, evita los daños de los organos internos, impide la entrada de infecciones, reduce la perdida de agua, le protege contra la radiación ( \(\uparrow\) ) solar y contiene también órganos de los sentidos que permiten al organismo estar informado sobre su entorno
dermis, dermis \((n)=\operatorname{piel}(\uparrow)\)
epidermis, epidermis (n), capa exterior de la piel ( \(\uparrow\) ) La epidermis consta de tres capas principales de células: el estrato de Malpighi continuo es capaz de producir nuevas células por división y reemplazar así las capas epidérmicas gastadas; el estrato granuloso se gradúa hasta el estrato córneo exterior y más duro, que está compuesto sólo por células muertas y que constituye la principal porción protectora de la piel. El estrato córneo puede volverse muy duro y grueso en zonas sometidas a desgaste permanente, tal como la planta de los pies
glándula sebácea, sebaceous gland, cualesquiera de las numerosas glándulas (p.87) contenidas dentro de la piel ( \(\uparrow\) ), que se abren en los foliculos ( \(p .132\) ) y que secretan ( p .106 ) una sustancia antiséptica oleosa que repele el agua y mantiene flexible la piel

folículo piloso, hair folicle \(\mid\) ( \(n\) ), foseta dentro de los estratos granuloso y de Malpighi de la epidermis (p. 131), que contiene la raíz de un pelo y desde la que crece el pelo por división celular. Las glándulas sebáceas (p. 131) se abren a los folículos pilosos y contienen también músculos ( \(p\). 143) para erguir los pelos, con fines de aislamiento, y terminaciones nerviosas (p. 149), con fines de sensibilidad.
glándula sudorípara, sweat gland, glándula (p. 87) tubular arrollada, situada dentro de la epidermis (p. 131), y que absorbe la humedad con sales y minerales de las células de su alrededor y la libera a la superficie a través de un tubo, haciendo que la piel (p. 31) se enfríe al evaporarse la humedad en la atmósfera.
hibernación, hibernation (n), proceso por el que ciertos organismos responden de un modo controlado a temperaturas exteriores muy bajas. La temperatura central del animal desciende hasta casi la del entorno ( p .218 ) y se produce un descenso en el metabolismo, aunque el sistema nervioso (p.149) continúa funcionando de modo que si la temperatura baja valores próximos a los letales, el animal incrementa su metabolismo para contrarrestarlo.
hipertermia, hyperthermia ( \(n\) ), sobrecalentamiento Condición en la que como resultado de una actividad violenta, enfermedad o calentamiento por radiación (p.131), la temperatura del cuerpo de un organismo sube por encima de su nivel normal. Como resultado de impulsos nerviosos ( \(p\). 150) enviados al hipotálamo (p. 156), se toman contramedidas que incluyen la dilatación de los vasos (p.127) sanguíneos, a fin de que se pierda más calor por radiación, convección (p.131) o conducción (p. 131), y la sudoración para enfriar la superficie corporal al evaporarse la humedad.
hipotermia, hypothermia ( \(n\) ), sobreenfriamiento. Condición en la que la temperatura de un organismo desciende por debajo de su nivel normal. Como resultado de impulsos nerviosos (p. 150) enviados al hipotálamo (p. 156) se toman medidas, que incluyen una reducción en la sudoración, constricción de los vasos ( \(p\). 127) sanguíneos para reducir la cantidad de calor perdida por radiación ( \(p .131\) ), conducción ( p .131) y convención ( \(p .131\) ), rápida contracción espasmódica de los músculos ( \(p\). 143) para provocar escalofríos y un aumento del metabolismo (p. 32).
estivación, aestivation ( \(n\) ), condición de inactividad o torpor en la que algunos animales entran durante los períodos de sequía y temperaturas altas. Los peces pulmonados, p. ej., se entierran en el barro al comienzo de la estación seca y vuelven a salir cuando comienza a llover de nuevo.
caída de las hojas, leaf fall, condición en la que algunas plantas entran durante períodos de extrema escasez de agua, perdiendo algunas de sus hojas para reducir las pérdidas de agua por transpiración (p. 120).
pequeño osmorregulación, osmoregulation ( \(n\) ), proceso mediante el cual un organismo mantiene el potencial osmótico ( \(p .118\) ) en sus fluidos corporales a un nivel constante; p. ej.: los peces dulceacuicolas toman constante; \(p\). \(\mathrm{j} .\). : 0 s peces dulceacuicolas toman
grandes volumenes de agua a través de las branquias ( \(p .113\) ) por ósmosis ( \(p .118\) ), que después son excretadas (p.134) como orina (p. 135) por los riñones ( \(p\). 135). Los peces marinos beben agua del mar [peces óseos ( \(p .76\) )], de modo que absorben (p. 81) sales a través del intestino y el agua sale por ósmosis, eliminándose las sales a través de las bran quias, o bien retienen urea ( \(p\) 134) de modo que sus fluidos son hipertónicos (p. 118) con respecto al sus fluidos son hipertonicos ( p . 118) con respecto al
agua marina y después, lo mismo que los peces dulagua marina y después, lo mismo que los peces dulceacuícolas
branquias.
cuerpo carótido, carotid body, pequeña estructura ovalada de la arteria ( p .127 ) carótida que contiene nervios ( \(p .149\) ), que responden al contenido de oxigeno y dióxido de carbono de la sangre (p.90), y así controlan el nivel de la respiración (p. 112).
seno carótido, carotid sinus, pequeña protuberancia de la arteria ( \(p\). 127) carótida que contiene nervios (p.149), que responden a la presión sanguínea (p. 90), y controlan así la circulación (p. 123).
excreción, excretion (n), proceso mediante el cual los productos de desecho y perjudiciales del metabolismo (p. 26), tales como agua, dióxido de carbono, sales y compuestos nitrogenados, son eliminados del organismo.
fórmulas químicas de los residuos nitrogenados
\(\mathrm{NH}_{3}\)

urea, urea ( \(n\) ), compuesto ( \(p .15\) ) orgánico nitrogenado que es soluble en agua y constituye el principal producto de la excreción ( \(\uparrow\) ), resultante de la descomposición de los aminoácidos ( \(p .21\) ) en ciertos animales.
ácido úrico, uric acid, compuesto (p.15) orgánico nitrogenado, insoluble en agua, que es el principal producto de la excreción ( \(\uparrow\) ) resultante de la descomposición de los aminoácidos (p.21) en ciertos animales. Debido a que es insoluble el ácido úrico no es tóxico y puede ser excretado sin grandes pérdidas de agua.
amoniaco, ammonia ( \(n\) ), compuesto ( \(p .15\) ) inorgánico nitrogenado que es muy tóxico y que sólo se encuentra como producto de excreción ( \(\uparrow\) ) en organismos donde hay disponibles grandes cantidades de agua para su eliminación, tal como en los animales acuáticos.
vacuola contráctil, contractile vacuole, vacuola (p.11) presente en el endoplasma (p. 44) de los Protozoos (p.44), que es importante en la osmorregulación (p. 133) de estos organismos. En soluciones (p. 118) hipotónicas (p.118) la vacuola se hincha y después parece contraerse, expulsando al exterior el agua que ha entrado en la célula con el alimento o procedente del medio. El agua pasa a la solución. En soluciones hipertónicas ( \(p .118\) ) e isotónicas ( \(p .118\) ) la vacuola desaparece.

túbulo de Malpighi, Malpighian tubule, cualesquiera de los numerosos tubos ciegos y estrechos que son los órganos principales de la osmorregulación (p. 133) y la excreción ( \(\uparrow\) ) en los insectos (p.69) y otros miembros de los artrópodos (p.67). Proceden del intestino (p. 98) y en ellos se producen cristales de ácido úrico ( \(\uparrow\) ), que pueden ser eliminados con poca pérdida de agua. Aunque los insectos tienen una cutícula impermeable delgada, pierden agua a traves de las articulaciones (p.146) y mediante la respiración (p.112).

uréter, ureter ( \(n\) ), tubo o conducto que transporta la orina \((\downarrow\) ) desde el riñón (p.136) a la vejiga ( \(\downarrow\) ). vejiga \({ }^{\text {a }}\), bladder ( \(n\) ), saco extensible en el que desemboca el uréter \((\uparrow)\) y que se llena con la orina \((\downarrow)\) secretada (p. 106) de manera continua por los riñones ( \(p .136\) ). Cuando está llena, se abre mediante un músculo esfínter (p.127), se contrae y expulsa la orina.
orina, urine ( \(n\) ), fluido final que es expulsado de los riñones ( p .136 ). Contiene urea ( \(\uparrow\) ), o ácido úrico \((\uparrow)\), junto con otros materiales y agua.
hormona antidiurética, anti-diuretic hormone, hormona (p.130) sintetizada por el hipotálamo (p. 156) y secretada (p. 106) por la glándula pituitaria (p. 157) incrementa la reabsorción de agua en los riñones (p.136), aumentando así la concentración de la orina ( \(\uparrow\) ).
aldosterona, aldosterone ( \(n\) ), hormona (p. 130) secretada ( p .106 ) por las glándulas suprarrenales (p. 130), que estimula la reabsorción de sodio de los riñones (p. 136) y aumenta la excreción ( \(\uparrow\) ) de potasio, tendiendo así a incrementar la concentración de sodio en la sangre (p.90) mientras que reduce la concentración de potasio.
riñón, kidney ( \(n\) ), en los mamíferos (p.80), cualquiera del par de órganos que constituyen el lugar principal de excreción y que están implicados, asimismo, en la osmorregulación (p. 113). La sangre (p.90) es bombeada por el corazón (p. 124) bajo presión a través de los riñones y, mediante reabsorciones y se creciones (p. 106), las sustancias útiles son devueltas a la sangre, mientras que los residuos son eliminados en la orina.
nefrona, nephron ( \(n\) ), cualesquiera de las estructuras principales de excreción (p. 134) en los riñones ( \(\uparrow\) ) Es un túbulo microscópico ( \(p .9\) ) formado por un corpúsculo de Malpighi y un conducto de drenaje. En las nefronas tienen lugar los procesos de filtración y reabsorción.

cápsula de Bowman, Bowman's capsule, parte de corpúsculo de Malpighi en la nefrona ( \(\uparrow\) ). Es un en sanchamiento en forma de copa que rodea el glomé rulo ( \(\downarrow\) ), formando parte de la estructura, a través de la cual la sangre (p.90) es empujada bajo presión y por la que es "purificada" mediante un procedimiento llamado ultrafiltración ( \(\downarrow\) ).
asa de Henle, loop of Henle, túbulo en forma de \(U\) de la nefrona \((\uparrow)\) en el cual es bombeado fluido rena \((\downarrow)\) isotónico (p.118). Cuando el fluido pasa en dirección contraria a lo largo del otro brazo del túbulo, iones sodio son transportados activamente (p. 122) al primer brazo, de modo que en la zona de cambio de sentido del túbulo hay una concentración elevada de iones sodio. A partir de aquí hay conductos colectores que se abren en la pelvis renal, desde don de el agua es recogida por ósmosis (p.118). Así, en los tubos colectores, el fluido renal se vuelve hipertó nico (p. 118).




xerófito p. ei.: cacto

giomerulo, glomerulus (n), nudo de capilares (p. 127) que forma parte del corpúsculo de Malpighi y en e que la sangre ( \(p .90\) ) es bombeada a traves de la arteria (p. 127) renal y las arteriolas (p. 127). La sangre es empujada a través de las paredes de los ca pilares hacia la cápsula de Bowman ( \(\uparrow\) ).
fluido renal, renal fluid, fluido constituido en su mayor parte por plasma ( p .90 ) sanguíneo y los materiales solubles que contiene, que durante el proceso de ul trafiltracion ( \(\downarrow\) ) pasa a traves de los riñones ( \(\uparrow\) )
ultrafiltración, ultrafiltration ( \(n\) ), proceso en el que una gran parte del plasma (p.90) sanguíneo y los materiales solubles que contiene son empujados a presion a traves de las paredes del glomerulo ( \(\uparrow\) ), a traves de las paredes de la capsula de Bowman ( \(\uparrow\) ) y hacia la luz ( \(\downarrow\) ) de la nefrona ( \(\uparrow\) )
luz, lumen ( \(n\) ), espacio dentro de un tubo o un sáculo
hidrófito p. ej.: Nenúfar

hidrófito, hydrophyte ( \(n\) ), planta adaptada a crecer en el agua o en condiciones muy húmedas. Las hojas y los tallos contienen a menudo espacios de aire para ayudar a la flotación de toda la planta o parte de ella.
mesófito, mesophyte ( \(n\) ), planta adaptada a crecer en hábitats ( \(p\). 127) con suministros normales de agua Por lo general tienen hojas grandes y aplanadas que pierden durante la caída de las hojas (p.133)
xerófito, xerophyte \((n)\), planta adaptada a crecer en medios ( p .218 ) muy secos.
sustancia de crecimiento, growth substance, hormona ( \(p .130\) ) que, en cantidades muy pequeñas, puede incrementar, reducir o alterar de otro modo el crecimiento de una planta o partes suyas.
ácido indol-acético, indole-acetic acid IAA, sustancia de crecimiento ( \(\uparrow\) ) que hace que las células vegetales crezcan más largas y se dividan. El IAA es la más común del grupo de sustancias de crecimiento llamadas auxinas
auxina, auxin ( \(n\) ), véase ácido indol-acético ( \(\uparrow\) ).

giberelina, giberellin ( \(n\) ), sustancia de crecimiento ( \(\uparrow\) ) que provoca la elongación de las células en los tallos y que puede aumentar la superficie de las hojas También puede promover diversos efectos sobre el crecimiento de los vegetales, tales como la germinación de las semillas (p. 168), la floración y la fructificación.

citoquinina, cytokinin ( \(n\) ), sustancia de crecimiento ( \(\uparrow\) ) que, asociada con IAA, afecta la velocidad de división de una célula, estimula la formación de yemas y es esencial para el crecimiento de hojas sanas. Se conoce también como quinina.

absicina, absicin ( \(n\) ), sustancia de crecimiento ( \(\uparrow\) ) que inhibe el desarrollo vegetal, evita la germinación (p. 168) y tiende a que las yemas permanezcan en estado latente. La absicina parece trabajar en contra de las sustancias de crecimiento normales, evitando la fabricación de las proteínas (p.21), etc


geotropismo

eteno, ethene ( \(n\) ), sustancia de crecimiento ( \(\uparrow\) ) que se produce como resultado del metabolismo (p.26) normal de las plantas y que puede hacer que las hojas caigan y que maduren los frutos. Es conocida también como etileno.
florígeno, florigen \((n)\), sustancia de crecimiento ( \(\uparrow\) ) que, aunque nunca ha sido aislada, se cree que favorece la producción de flores.
tropismo, tropism (n), modo en el que la dirección de crecimiento de una planta responde a estímulos externos.
geotropismo, geotropism (n), tropismo ( \(\uparrow\) ) en el que las varias partes de una planta crecen en respuesta al empuje de la gravedad terrestre; p. ej.: las raíces primarias crecen hacia abajo, y se dice que tienen geotropismo positivo, mientras que los tallos principales lo hacen hacia arriba, y se dice que tienen geotropismo negativo.
estatolito, statolith ( \(n\) ), grano grande de almidón (p.18) que se encuentra en las células vegetales y que se cree que responde a los efectos de la gravedad, causando el geotropismo (p. 139)
fototropismo, phototropism (n), tropismo (p. 139) en e que las distintas partes de la planta crecen en res puesta a la dirección desde la que incide la luz so bre ellas. Los tallos tienden a crecer hacia la luz y se dice que tienen fototropismo positivo. Las raíces de algunas plantas, p. ej., de las trepadoras, crecen en sentido contrario a la fuente luminosa, y se dice que tienen fototropismo negativo
auxina en fototropismo


1 ápice de 2 exposición lateral a la 3 aumenta la concentración allo en la luz, la concentración de relativa de auxina en el ssurina oncentración en el iluminado la luz concentración en el iluminado la luz
uniforme
hidrotropismo, hydrotropism (n), tropismo (p. 139) en el que las raices de la planta crecen hacia una fuente de agua. El hidrotropismo suele superar a los efectos del geotropismo (p. 139)
quimiotropismo, chemotropism (n), tropismo (p. 139) en el que las raíces de una planta o las hifas (p.46) de un hongo ( \(p .46\) ) crecen hacia una fuente de ma teriales nutrientes.
tigmotropismo, thigmotropism ( \(n\) ), tropismo (p. 139) en el que, por el estímulo de un roce, ciertas partes de algunas plantas particulares, tales como los tallos de las trepadoras, pueden enrollarse alrededor de un soporte
movimientos násticos, nastic movements, movimien tos de crecimientos, tales como la apertura y el cierre de las flores, que aunque suceden como resultado de estímulos externos, tales como la presencia o ausencia de luz, no tienen lugar en una dirección particular.
fotonastia, photonasty ( \(n\) ), movimiento nástico ( \(\uparrow\) ) que es una respuesta a la presencia o ausencia de luz o incluso a niveles de iluminación; p. ej.: las margaritas se cierran de noche y sólo se abren con luz diurna.


\section*{movimientos tigmonásticos} de las hojas de una mimosa después de tocarla

dominancia apical
 a auxina translocada del ápice inhibe el desarrollo de emas axilares en brotes laterales

termonastia, thermonasty (n), movimiento nástico \((\uparrow)\), que es una respuesta a la temperatura ambiente; p. ej.: las flores de algunas plantas se abren cuando hace calor
tigmonastia, thigmonasty ( \(n\) ), movimiento nástico ( \(\uparrow\) ) en el que la respuesta es al roce; p. ej.: las hojas de la planta conocida como mimosa, se pliegan cuando se las toca.
taxias, taxic movements, movimiento de un organismo en el que la respuesta tiene lugar en relación a la dirección del estímulo
fototaxis, phototaxis ( \(n\) ), taxia ( \(\uparrow\) ) en el que el movimiento puede ser en contra o hacia la dirección en la que llega la luz. Por ejemplo, ciertos insectos (p. 69 se esconden de la luz, y se dice que tienen fototaxi negativa, mientras que, al contrario, muchas algas (p. 44) se mueven hacia la luz, y se dice que tienen fototaxis positiva.
termotaxis, thermotaxis ( \(n\) ), taxia ( \(\uparrow\) ) en la que el movimiento puede ser en contra o hacia regiones de temperaturas más altas o mas bajas; p. ej.: un mami fero ( \(p .80\) ) puede buscar la sombra de un árbol du rante el calor del día para evitar sobrecalentarse
quimiotaxis, chemotaxis ( \(n\) ), taxia \((\uparrow)\) en la que un organismo puede moverse hacia un estímulo químico, p. ej.. un espermatozoide ( \(p\). 178) puede nada hacia un órgano femenino que secreta ( \(p\). 106) una sustancia tal como sucrosa (p. 18)
movimientos higroscópicos, hygroscopic move ments, movimientos que tienen lugar cuando partes de los organismos se secan y partes más gruesas se mueven de manera distinta a las más delgadas.
movimientos autónomos, autonomic movements, mo vimientos que tienen lugar en un organismo sin ningún estímulo externo. El estímulo procede del interior del mismo organismo y puede incluir movimientos tales como el arrollamiento de los zarcillos de plantas trepadoras como los guisantes
dominancia apical, apical dominance, estado que puede producirse en plantas en los que la yema de apice del tallo crece, pero no lo hacen las laterales. Si se elimina la yema apical, pueden crecer ramas aterales.
vernalización, vernalization ( \(n\) ), proceso mediante el que ciertas plantas, tales como los cereales, tienen que ser sometidos a bajas temperaturas; p. ej.: las que se producen durante el invierno, en la primera etapa de su crecimiento, antes de que induzcan la floración.
fitocromo, phytochrome ( \(n\) ) pigmento fotosensible (p. 126) presente en las hojas de las plantas, que existe en dos formas que pueden convertirse una en otra. Una absorbe luz roja, la otra infrarroja. En ausencia de luz, esta ultima se convierte lentamente en la primera. Los fitocromos inician la formacion de hormonas (p. 130)
ahilamiento, etiolation ( \(n\) ), crecimiento vegetal que tiene lugar en ausencia de luz. Las plantas pueden carecer de clorofila ( \(p .12\) ), de modo que serán amarilas o incluso blancas. Las hojas serán de tamaño educido y los tallos tenderán a alargarse.
fotoperiodicidad, photoperiodism ( \(n\) ), proceso en el que ciertas actividades, tales como la floración o la caída de las hojas (p. 133), responden a los cambios estacionales en la duración del día.
plantas de día largo, long-day plants, plantas tales como el pepino, que por lo general sólo florecen durante los meses estivales en climas templados, cuando las horas de luz diurna son más de catorce al día.
plantas de día corto, short-day plants, plantas tales como el crisantemo, que por lo general sólo florecen durante los meses primaverales u otoñales en climas templados, cuando las horas de luz diurna son menos de catorce al día
plantas de dia neutro, day-neutral plants, plantas tales como el guisante, en las que las horas de luz diurna no influye sobre el período de floración.
fotoperiodismo


ahilamiento

planta de día largo

mantenida en mantenida en días cortos días largos
planta de día corto

mantenida en mantenida en días cortos dias largos
fibra de musculatura voluntaria locomoción, locomotion (n), capacidad de un organismo de mover todo o parte de su cuerpo, indepen dientemente de cualquier fuerza exterior. Por lo general, un animal puede mover todo su cuerpo mientras que una planta sólo es capaz de mover ciertas partes, tales como los petalos (p.179) o las hojas, en respuesta a cambios del medio (p. 218).
músculo, muscle ( \(n\) ), tejido ( \(p .83\) ) formado por células o fibras que se contraen fácilmente.
fibra, fibre ( \(n\) ), estructura con aspecto de filamento músculo esquelético, skeletal muscle, tejido (p. 83) muscular ( \(\uparrow\) ) constituido por células alargadas con numerosos núcleos ( \(p .13\) ) y estriaciones transversales en el citoplasma (p.10). Suele presentarse en forma de haces y está bajo el control voluntario de sistema nervioso central (p.149), de modo que se contrae cuando es estimulado para hacerlo. Estos músculos van unidos a partes del esqueleto (p. 145) y sus contracciones hacen que estas partes se muevan. El músculo esquelético con aspecto rayado se conoce como músculo estriado. Consta de largas y estrechas fibras musculares unidas mediante una membrana (p. 14) y conteniendo numerosos nucleos. Las fibras musculares se reúnen en haces, que se contraen cuando son estimuladas
músculo voluntario, voluntary muscle \(=\) músculo es quelético ( \(\uparrow\) ).
músculo estriado, striated muscle = músculo esquelético ( \(\uparrow\) ).
músculo liso, unstriated muscle, smooth muscle \(=\) músculo involuntario ( \(\downarrow\) ).
músculo involuntario, involuntary muscle, músculo \((\uparrow)\) que se encuentra en los órganos internos y en los vasos ( \(p\). 127) sanguíneos y que consta de sen cillos tubos o láminas. Está bajo el control involuntario del sistema nervioso autónomo (p. 155). Se le conoce también por músculo liso.
músculo visceral, visceral muscle, tejido (p.83) muscular liso ( \(\uparrow\) ) formado por células alargadas que se mantienen unidas por tejido conjuntivo (p.88) y es activado involuntariamente. Se encuentra en todos los órganos internos y en los vasos (p. 127) sanguíneos, con la excepción del corazón (p.124).
músculo cardíaco, cardiac muscle, tejido (p.83) mus cular que se encuentra sólo en las paredes del corazón (p. 124). Consta de fibras que contienen miofibri las (p. 144) estriadas ( \(\uparrow\) ) transversales. Se contrae ritmica y automáticamente (es decir, sin estimulación nerviosa) (p. 149). Se conoce también con la deno minación de miocardio.
miocardio, myocard ( \(n\) ) = músculo cardíaco.
fibra muscular, muscle fibre, células alargadas que constituyen los músculos estriados (p. 143) y que constan de humerosas miofibrillas \((\downarrow)\).
miofibrilla, myofibril ( \(n\) ), filamentos muy finos que constituyen todas las fibras musculares ( \(\uparrow\) ) y que se encuentran en los músculos liso, estriado (p. 143) y cardíaco (p. 143). Contienen las proteínas contráctiles ( \(p .21\) ) miosina \((\downarrow)\), actina \((\downarrow)\) y tropomiosina \((\downarrow)\).
sarcómero, sarcomere ( \(n\) ), parte de la miofibrilla ( \(\uparrow\) ) que es responsable de la contracción. Está constituida por una banda central oscura A compuesta de miosina \((\downarrow)\), a cada uno de cuyos lados hay bandas I compuestas de actina ( \(\downarrow\) ). Cada sarcómero está unido al siguiente mediante la membrana \(Z\) (p. 14). Durante la contracción, la banda I se acorta, mientras que las A mantienen más o menos la misma longitud, de modo que los filamentos musculares se deslizan entre sí.
filamentos gruesos, thick filaments, filamentos de una miofibrilla \((\uparrow)\) compuestos de miosina \((\downarrow)\).
filamentos delgados, thin filaments, filamentos de una miofibrilla ( \(\uparrow\) ) que están compuestos de actina ( \(\downarrow\) ).
actina, actin ( \(n\) ), proteína ( p .21 ) contráctil que constituye uno de los elementos principales en las miofibrillas ( \(\uparrow\) ) musculares (p.143). Cuando se las estimula, la actina y la miosina \((\downarrow)\) se unen para formar actomiosina ( \(\downarrow\) ).
miosina, myosin (n), proteína (p. 21) contráctil que constituye el elemento más abundante en-las miofibrillas ( \(\uparrow\) ) musculares (p. 143). Cuando se las estimula, la actina \((\uparrow)\) y la miosina se unen para formar actomiosina ( \(\downarrow\) ).
actomiosina, actomyosin ( \(n\) ), complejo de dos proteí nas ( p .21 ), actina ( \(\uparrow\) ) y miosina ( \(\uparrow\) ), que cuando interaccionan para formar el complejo dan como resultado la contracción del músculo (p. 143).
tropomiosina, tropomyosin ( \(n\) ), tercera proteína que se encuentra en las miofibrillas ( \(\uparrow\) ), que puede ser responsable de controlar las contracciones del músculo (p. 143).
hipótesis de los filamentos deslizantes, sliding filament hypothesis, teoría (p.235) que indica que cuando un músculo ( \(p .143\) ) se contrae, los filamentos individuales no se acortan, sino que se deslizan unos contra otros, puesto que con el microscopio electrónico (p.9) puede verse que el dibujo de las estriaciones (p. 143) cambia durante la contracción.
retículo sarcoplasmático, sarcoplasmic reticulum, re tículo endoplasmático liso ( \(p\). 11) que es responsa ble de absorber ( \(p .81\) ) el calcio necesario para la contracción muscular (p. 143)
huso muscular, muscle spindle, fibra ( \(\uparrow\) ) muscular modificada que es receptiva a los estímulos y controla la manera en la que un músculo ( \(p\). 143) se contrae.
exosqueleto de la pinza de un crustáceo
proyección interna del exosqueleto del exosqueleto
(apodema) para exosqueleto fijación de la musculatura
esqueleto, skeleton ( \(n\) ), estructura de soporte. Puede ser articulado (p. 146) y las articulaciones (p. 146) estan conectadas mediante músculos (p.143) que, cuando se contraen como palancas, permiten al animal accionar los miembros; p. ej.: las patas, posibilitándole el movimiento en tierra firme
exosqueleto, exoskeleton ( \(n\) ), esqueleto ( \(\uparrow\) ) externo de organismos, tales como los insectos (p. 69), que proporciona protección para los órganos internos y que es la estructura a la que van unidos los múscuos (p. 143); p. ej.: la concha de un berberecho se consideraria un exosqueleto
apodema, apodeme ( \(n\) ), cada una de las numerosas proyecciones del interior de un exosqueleto ( \(\uparrow\) ) donde están las articulaciones (p. 146) y a las que se fijan los músculos (p.143) para el movimiento de estas articulaciones
cutícula a, cuticle ( \(n\) ), capa exterior del exosqueleto ( \(\uparrow\) ) que en animales tales como los insectos (p. 69), actúa como esqueleto ( \(\uparrow\) ) a su vez. Puede estar compuesta de quitina (p. 49), pero en los crustáceos se endurece con sales ricas en cal. Es secretada (p. 106) por la epidermis (p. 131) y no es celular. La epicutícula externa es cerosa e impermeable en los insectos y otros artrópodos (p.67)
esqueleto hidrostático, hydrostatic skeleton, forma de esqueleto ( \(\uparrow\) ) que se encuentra en animales de cuerpo blando, tales como las lombrices de tierra (p. 66), en las que los propios fluidos corporales (p. 66), en las que los propios fluidos corporales
proporcionan la estructura contra la que actúan los proporcionan la estr
músculos (p. 143).
endosqueleto, endoskeleton ( \(n\) ), estructura ósea o cartilaginosa (p.90) contenida dentro del cuerpo de los vertebrados (p. 74), que suele estar articulada (p. 146), para permitir el movimiento y a la que se fijan los músculos (p. 143) para proporcionar mecanismos para el movimiento.
sistema esquelético-muscular, musculo-skeletal sys tem, sistema que permite al animal moverse mediante un esqueleto ( \(\uparrow\) ) articulado (p. 146), contra el que los músculos (p. 143) pueden actuar para causar el funcionamiento de las articulaciones usando los miembros como palancas.
natación de los peces ondulaciones sucesivas de cuerpo del pez desde la cabeza a la cola.

natación, swimming ( \(n\) ), proceso mediante el cual un organismo tal como un pez, se impulsa a través on la superficie del agua mediante la acción de las aletas (p. 75), o flexionando todo el cuerpo. En los pe ces, cuando los músculos (p.143) se contraen, e cuerpo no puede acortarse, de modo que se mueve de un lado a otro para dar la propulsión
aleta caudal, caudal fin, aleta de la cola. Es el principal órgano mediante el que los peces se propulsan por el agua. Es una membrana (p. 14) sujeta por radios unidos a la columna vertebral (p. 74) del pez.
miotomo, myotome muscle, cualesquiera de los numerosos bloques de musculatura estriada ( \(p\). 143) que engloban por completo la columna vertebral (p.74) de los peces.
articulación, joint (n), región en la que dos o más huesos del esqueleto ( \(p\). 145) se ponen en contacto; \(p\). ej.: la del codo de un ser humano.
articulación esférica, ball and socket joint, articulación ( \(\uparrow\) ) móvil entre los miembros en la que un hueso termina en una estructura en forma de pomo, que coincide con otra en forma de copa, de modo que los huesos pueden realizar algún movimiento en todas direcciones; p. ej.: la articulación entre el fémur y el cinturón pelviano \((\downarrow)\)
articulación en charnela, hinge joint, articulación ( \(\uparrow\) ) móvil eńtre huesos en la que el movimiento puede tener lugar sólo en un plano o una dirección; p. ej.: Ia articulación de la rodilla
articulación trocoidea, pivot hinge, articulación ( \(\uparrow\) ) móvil entre huesos en la que el movimiento puede tener lugar en todas direcciones por rotación; p. ej.: las articulaciones del cuello
ligamento, ligament ( \(n\) ), tejido conjuntivo (p.88) elástico y fuerte que, p . ej., mantiene unidos los huesos de los miembros en una articulación ( \(\uparrow\) ) y que ayuda a controlar el movimiento de la articulación.
tendón, tendon (n), cordón grueso de tejido conjuntivo (p. 88) que une un músculo (p. 143) a un hueso. No es elástico, de modo que cuando el músculo se con trae empuja contra el hueso, obligándole a despla zarse en la articulación ( \(\uparrow\) ).
ecciones transversales del cuerpo de un pez en el centro aleta dorsal columna vertebral músculo en mioto rinon vejiga
natatoria natatoria ovarios intestino
hígado higad


\section*{en la cola} aleta dors columna vertebral músculo e miotomos aleta caudal
structura de una articulación

articulaciones esféricas


de un mamífero

músculo protractor, protractor muscle, músculo ( \(p .143\) ) que en la contracción empuja hacia adelante al hueso del miembro.
músculo retractor, retractor muscle, músculo (p. 143) que en la contracción empuja hacia atrás al hueso del miembro.
músculo aductor, adductor muscle, músculo (p. 143) que en la contracción empuja hacia dentro al hueso del miembro.
músculo abductor, abductor muscle. músculo (p.143) que en la contracción empuja hacia fuera al hueso del miembro
músculo rotador, rotator muscle, músculo (p. 143) que en la contracción gira hacia fuera o hacia dentro el hueso de un miembro.
músculo flexor, flexor muscle, músculo (p. 143) que en la contracción junta los huesos de dos miembros. músculo extensor, extensor muscle, músculo (p. 143) que en la contracción separa los huesos de dos miembros.
vértebra, vertebra (n), cada uno de los huesos, o en algunos casos segmentos de cartílago (p.90), que constituyen la columna vertebral (p. 74). Todas las vértebras suelen ser huecas y tienen músculos (p. 143) fijos a ellas
cinturón pelviano, pelvic girdle, parte del esqueleto ( \(p\). 145) de un vertebrado ( \(p\). 74) a la cual se fijan miembros que giran en charnela. Es rígido y proporciona el soporte principal para el peso del cuerpo. miembro, limb ( \(n\) ), cualquier parte del cuerpo de un animal salvo la cabeza y el tronco, incluyendo, p. ej.. los brazos, las patas o las alas
vuelo, flight ( \(n\) ), forma de locomoción (p. 143) que se encuentra en la mayoría de las aves y en muchos insectos, mediante la que el animal es llevado, a tra vés del aire, deslizándose con el viento mediante membranas (p.14) estiradas o usando el empuje generado por la forma especial y la potencia generada por las alas
pluma, feather ( \(n\) ), cada una de las numerosas estructuras que recubren el cuerpo de las aves, lo cual les permite distinguirse del resto de los animales. Las plumas aíslan el cuerpo del ave, repelen el agua, crean corrientes aerodinámicas y contribuyen a la potencia de vuelo
plumón, down ( \(n\) ), plumas ( \(\uparrow\) ) suaves y encrespadas que forman la cobertura inicial del cuerpo de las aves jóvenes y que se encuentra también en las partes inferiores de los adultos. Las barbas (p. 148) no están unidas entre sí, de modo que el plumón proporciona un mejor aislamiento que las plumas de vuelo al atrapar una capa de aire cerca del cuerpo del ave
pena, flight feather, cada una de las numerosas plu- pluma mas (p. 147) que proporcionan a las aves su efecto aerodinámico y que son alargadas para crear la superficie de vuelo.
raquis, shaft ( \(n\) ), tallo central en forma de varilla, pero flexible, de una pluma (p. 147), que va unida al folículo (p. 132) en la piel de un ave, que carece de glándulas sudoríparas (p. 132).
cálamo, quill ( \(n\) ), porción tubular dura de la pluma (p.147) que va unida al folículo (p. 132) y que va también conectada a los músculos ( \(p .143\) ), que son capaces de modificar el ángulo que tienen las plumas con relación al cuerpo del ave; p. ej., con tiempo frío, las aves levantan sus plumas para recoger capas adicionales de aire, a fin de conseguir un aislamiento más eficaz.
estandarte, vane ( \(n\) ), parte plana y en forma de hoja de la pluma (p. 147), compuesta por el raquis \((\uparrow)\) y la red de barbas y barbillas \((\downarrow)\).
barba, barb ( \(n\) ), saliente en forma de gancho que se proyecta desde el raquis ( \(\uparrow\) ) de una pluma (p. 147). Las barbas se encuentran unidas por medio de las barbillas ( \(\downarrow\) ).
barbilla, barbule ( \(n\) ), cualesquiera de las diminutas barbas ( \(\uparrow\) ) que van unidas a las barbas de una pluma (p. 147) y que conectan estas últimas mediante un sistema de ganchos y depresiones para constituir una red o estandarte \((\uparrow)\) de la pluma
músculo pectoral, pectoral muscle, cualesquiera de los músculos (p.143) grandes y fuertes que impulsan las alas de un ave para que suban y bajen, proporcionando así la potencia para et vuelo. Los músculos pectorales van unidos al esternón \((\downarrow)\) del ave. El pectoral mayor es el músculo que hace descender el ala, mientras que el pectoral menor es el responsable de su elevación.

esternón, sternum (n), hueso del pecho de los tetrápodos.
planeo, gliding ( \(n\) ). procedimiento de vuelo (p. 147) en el que el animal mantiene extendidas las alas, de modo que funcionan como las alas de avión, y el animal se remonta sobre un cojín de aire de apoyo.
irritabilidad, irritability ( \(n\) ), capacidad de un organismo de responder a los cambios en su medio (p.218); p. ej.: el movimiento de los animales en respuesta al ruido o a ser tocados.
sistema nervioso, nervous system, sistema dentro del cuerpo de un organismo que permite la transmisión de información a través del cuerpo, de modo que sus varias partes son capaces de responder con rapidez a cualquier estímulo.
sistema nervioso central, central nervous system SNC. Parte del sistema nervioso ( \(\uparrow\) ) que en los vertebrados (p.74) incluye el cerebro (p. 155) y la médula espinal (p. 154), que recibe los impulsos (p. 150) nerviosos procedentes de todas las partes del cuerpo, internas y externas, y que responde emitiendo las órdenes apropiadas a los diversos órganos y músculos (p.143) para reaccionar en consecuencia.
sistema nervioso periférico, peripheral nervous system, parte del sistema nervioso ( \(\uparrow\) ) que excluye el SNC ( \(\uparrow\) ). Consiste en una red de nervios que discurren a través del cuerpo del organismo y que están conectados con el SNC
neurona, neurone ( \(n\) ), cada una de las células especialmente modificadas que constituyen el sistema nervioso ( \(\uparrow\) ). Cada neurona está conectada, a través de sinapsis (p. 151), a otras mediante un único axón \((\downarrow)\) o fibra nerviosa y numerosas dendronas \((\downarrow)\) que transmiten impulsos (p. 150) nerviosos de una neurona a otra
célula nerviosa, nerve cell \(=\) neurona \((\uparrow)\).
cuerpo celular, cell body, parte de la neurona ( \(\uparrow\) ) que lleva el núcleo ( \(\uparrow\) ).
dendrón, dendron ( \(n\) ), ramificación del citoplasma (p. 10) del cuerpo de una neurona ( \(\uparrow\) ) que termina en una sinapsis ( \(p .151\) ). Puede ramificarse en dendritas.
cuerpos de Nissl, Nissl's granules, gránulos que se encuentran en el citoplasma (p.10) de una neurona ( \(\uparrow\) ). Son ricos en \(A F N(p .24)\).
axón, axon ( \(n\) ), prolong. ivión alargada de una neurona \((\uparrow\) ) ilena de axoplasma, que normalmente conduce impulsos (p. 150) nerviosos desde el cuerpo celu\(\operatorname{lar}(\uparrow)\). El axón está englobado en una cubierta de mielina ( \(p .150\) ) unida mediante una delgada membrana (p. 14), que es el neurilema de la célula de Schwann.
mielina, myelin (n), sustancia grasa que aísla el axón (p. 149) y acelera la transmisión de impulsos nerviosos ( \(\downarrow\) ). En los vertebrados (p:74) no todos los axones están recubiertos de mielina. La vaina mielinizada se interrumpe a intervalos en constricciones llamadas nudos de Ranvier.
neuroglia, neuroglia ( \(n\) ), células especializadas que protegen y sirven de soporte para el sistema nervioso central (p. 149).
impulso nervioso, nerve impulse, sucesión interespaciada de impulsos o señales que son transportadas entre las neuronas ( \(p\). 149) mediante el intercambio de iones sodio y cambios en el estado eléctrico de la neurona. Los impulsos se desplazan a velocidad constante a través del sistema nervioso (p. 149) y su energía no es proporcionada por ellos mismos.

\section*{transmision del impuiso nervioso}
a lo largo del nervio
dirección del impulso

potencial de reposo
membrana polarizada: en el interior negativo, en el exterior positivo. Iones sodio
expulsados por el mecanismo
de la bomba de sodio
potencial de reposo, resting potential, estado que se produce cuando una neurona (p. 149) está inactiva, de modo que lleva una mayor carga negativa en su interior y una mayor carga positiva en el exterior
potencial de acción, action potential, estado en el que una carga eléctrica se desplaza a lo largo de la membrana (p. 14) del axón (p. 149).
bomba sodio-potasio, sodium pump mechanism, mecanismo por el que los iones sodio son bombeados fuera de una neurona (p. 149) en cuanto que ha pasado el impulso nervioso ( \(\uparrow\) ).
polarización, polarization \((n)\), proceso en el que iones sodios son bombeados fuera de la neurona (p. 149) mediante la bomba sodio-potasio \((\uparrow)\), de manera que dentro de la célula se restaura su potencial de reposo ( \(\uparrow\) ).
ley del todo 0 el nada

despolarización, depolarization ( \(n\) ), proceso en el que la membrana ( \(p .14\) ) de la neurona ( \(p .149\) ) se vuelve permeable al paso de iones sodio que entran entonces en la célula, de modo que ésta queda cargada positivamente.
estímulo, stimulus ( \(n\) ), cualquier cambio en el medio (p.218) exterior o en el estado interno de un organismo que, a través del sistema nervioso (p. 149) en los animales, provoca una respuesta a ese cambio sin aportarle energía.
intensidad umbral, threshold intensity, nivel de estímulo por debajo del cual no hay respuesta nerviosa (p. 149) del organismo estimulado.
ley del todo o el nada, "all or nothing law", ley que establece que un organismo responderá a un estímulo sólo de dos maneras; es decir, sin respuesta nerviosa (p. 149) o con una respuesta que es de un grado de intensidad que no varía con la intensidad del estímulo.
período refractario, refractory period, espacio de tiempo que discurre entre el paso de un impulso nervioso ( \(\uparrow\) ) a través de una neurona ( \(p\). 149) y su vuelta al potencial de reposo ( \(\uparrow\) ). Durante este período la neurona no puede ser estimulada.
período refractario absoluto, absolute refractory period, período refractario ( \(\uparrow\) ) en el que otro estímulo de cualquier intensidad dará como resultado que no pase ningún otro impulso nervioso ( \(\uparrow\) ).
período refractario relativo, relative refractory period, período refractario ( \(\uparrow\) ) en el que otro estímulo, por lo general intenso, dará como resultado el paso de otro impulso nervioso ( \(\uparrow\) )
velocidad de transmisión, transmission speed, velocidad a la que un impulso nervioso ( \(\uparrow\) ) se desplaza y que depende del diámetro de la neurona (p. 149).
sinapsis, synapse ( \(n\) ), hueco que existe entre las neuronas (p. 149) y que es salvado durante el potencial de acción ( \(\uparrow\) ) por una sustancia secretada (p. 106) por la neurona.
transmisión sináptica, synaptic transmission, proceso mediante el cual son transmitidos impulsos nerviosos \((\uparrow)\) entre neuronas ( \(p\). 149) a través de un corpúsculo terminal (p. 152). El potencial de acción ( \(\uparrow\) ) se detiene en la sinapsis ( \(\uparrow\) ), pero provoca la liberación de una sustancia que se desplaza a través de la sinapsis y genera un nuevo potencial de acción en la neurona vecina.
corpúsculo terminal, synaptic knob ( \(n\) ), extremo en orma de botón del axón (p. 149) que se proyecta en a sinapsis (p. 151)
acetilcolina, acetylcholine (n), sustancia que es liberada cuando el potencial de acción (p. 150) en una neurona (p. 149) llega a la sinapsis (p. 151). Es producida especificamente entre una neurona y una céIula muscular (p. 143). Existe un enzima (p. 28) es pecial llamada acetilcolina esterasa, que la descompone, por lo que se interrumpe su efecto
atropina, atropine ( \(n\) ), sustancia que se encuentra en la belladona, una planta, y que actúa como veneno al impedir la transmisión de impulsos nerviosos (p. 150) desde la neurona (p. 149) a los tejidos p. 83) corporales
estricnina, strychnine ( \(n\) ), sustancia que se obtiene de la nuez vómica y que tiene un intenso efecto estimulador del sistema nervioso central (p. 149), hasta el punto que en cantidades que no sean diminutas actúa como veneno.
adrenalina, adrenaline ( \(n\) ), sustancia, similar a la noradrenalina \((\downarrow)\), liberada por las cápsulas suprarrena les (p.130), que incrementa el ritmo metabólico y otras funciones cuando pasa a la corriente sanguí nea (p. 90) durante los estados de tension o al prepararse para la accion
noradrenalina, noradrenaline ( \(n\) ), sustancia liberada cuando el potencial de acción ( \(p\). 150) en una neurona (p. 149) llega a la sinapsis (p. 151). Se produce en el sistema nervioso autónomo (p. 155). Es, asimis mo, secretada ( \(p\). 106) por las glándulas suprarrenales ( \(p .130\) ) y afecta al miocardio ( \(p .143\) ) y a los músculos involuntarios (p.143), etc.
sumación, summation ( \(n\) ), proceso en el que el efecto aditivo de los impulsos nerviosos (p. 150) que llegan a diferentes neuronas (p. 149), estimula el impulso en otra neurona, aunque no se produce la llegada de impulsos.
facilitación, facilitation (n), proceso en el que la estimulación de una neurona (p. 149) se incrementa por sumación ( \(\uparrow\) )
acto reflejo, reflex action, respuesta fundamental e innata (p. 164) de un animal a un estímulo; p. ej.: la reacción automática de fuga de una fuente de amenaza o dolor, como es retirar la mano de un objeto muy caliente.

membrana de dendrita postsináptica
arco reflejo simple

neurona sensora, sensory neurone, neurona (p. 149) que transporta impulsos nerviosos (p. 150). desde e receptor \((\uparrow)\) al sistema nervioso central (p. 149).
neurona intermedia, internuncial neurone, neurona (p. 149) que transporta impulsos nerviosos (p. 150), desde las neuronas sensoras \((\uparrow)\) hasta las neuronas eferentes ( \(\downarrow\) ).
neurona eferente, efferent neurone, neurona (p. 149) que transporta impulsos nerviosos (p. 150), desde as neuronas intermedias ( \(\uparrow\) ) a los efectores ( \(\downarrow\) ). Se conoce también como neurona motor.
efector, effector ( \(n\) ), cualquier célula u órgano, tal co mo un músculo ( p .143 ), que responde de alguna manera al estimulo procedente de un impulso nervioso (p. 150)
reflejo condicionado, conditioned reflex, acto reflejo ( \(\uparrow\) ) que ha sido modificado por el aprendizaje o la experiencia y que necesita ser reforzado periódicamente para mantenerse.
taxia, taxis (n), acto reflejo ( \(\uparrow\) ) en el que los movimien tos en respuesta al estímulo vienen determinadas por la dirección del estímulo; p. ej.: el movimiento de aproximación a la luz o de alejamiento dè ella o la fuerza de gravedad. Véase también taxias (p.141).
cinesis, kinesis ( \(n\) ), acto reflejo ( \(p\). 152) en el que la velocidad del movimiento viene afectada por la intensidad del estímulo y no por la dirección; p. ej.: las cochinillas se mueven más rápidamente en entornos secos que en húmedos.
médula espinal, spinal cord, parte del sistema nervio so central ( \(p .149\) ) de los vertebrados ( \(p .74\) ) contenida dentro de un tubo hueco que discurre en toda la longitud de la columna vertebral (p.74), y que parte del bulbo raquideo (p. 156). Consta de neuronas (p. 149) y tibras nerviosas, con un canal central que contiene un fluido. Pares de nervios espinales ( \(\downarrow\) ) salen de la médula espinal para pasar al cuerpo. La médula espinal transporta impulsos nerviosos (p. 150) a y desde el cerebro \((\downarrow)\) y el cuerpo.
médula espinal

meninges, meninges ( \(n\). pl.), las tres membranas (p.14) que protegen el sistema nervioso central (p. 149) de los animales vertebrados (p. 74)
piamadre, pia mater, una de las meninges ( \(\uparrow\) ). Membrana (p.14) interior delicada y blanda que está próxima al sistema nervioso central (p.149) y que está densamente cubierta de vasos ( \(p\). 127) sanguíneos.
aracnoides, arachnoid mater, la central de las tres meninges ( \(\uparrow\) ), separada de la piamadre ( \(\uparrow\) ) por espa cios lienos de fluido
duramadre, dura mater, una de las meninges ( \(\uparrow\) ). Membrana externa rígida que está en contacto directo con el aracnoides ( \(\uparrow\) ) y que contiene vasos (p.127) sanguíneos.
nervio espinal, spinal nerve, cada uno de los pares de nervios (p. 149) que parten de la médula espinal ( \(\uparrow\) ) en segmentos

materia gris, grey matter, tejido (p. 91) nervioso de color gris que se encuentra en el centro de la médula espinal ( \(\uparrow\) ), así como en partes del cerebro ( \(\downarrow\) ). Contiene gran número de sinapsis (p. 151) y consta principalmente de cuerpos celulares ( \(p .149\) ) nerviosos (p. 149).
sustancia blanca, white matter, tejido (p. 91) nervioso de color blanquecino que se encuentra en la región exterior de la médula espinal ( \(\uparrow\) ) y en partes del cerebro \((\downarrow)\). Conecta diferentes partes del sistema nervioso central (p.149) y consiste principalmente en axones (p. 149).
sistema nervioso autónomo, autonomic nervous system, parte del sistema nervioso central (p.149) en los vertebrados ( p .74 ), que transporta impulsos nerviosos ( \(p .150\) ) desde los receptores ( \(p .153\) ) a las fibras (p.144) de musculatura lisa del corazón (p. 124), el intestino (p.98) y otros órganos internos.
sistema nervioso simpático, sympathetic nervous system, parte del sistema nervioso autónomo ( \(\uparrow\) ) que aumenta el ritmo cardíaco (p. 124) y de la respiración (p. 112), la secreción (p. 106) de adrenalina (p. 152) y la presión sanguínea (p.90), y hace más lenta la digestión (p.98), de modo que el cuerpo del vertebrado ( p .74 ) está preparado para una acción de emergencia en respuesta a estímulos.
sistema nervioso parasimpático, parasympathetic nervous system, parte del sistema nervioso autónomo ( \(\uparrow\) ) que actúa en sentido contrario al sistema nervioso simpático \((\uparrow)\), reduciendo los latidos del corazón (p. 124), etc. Ambos sistemas actúan en coordinación para controlar las velocidades de acción.
ganglio, ganglion (n), haz de cuerpos celulares (p.149) nerviosos (p. 149), contenido dentro de una vaina, que en los invertebrados ( p . 75) puede formar parte del sistema nervioso central ( p . 149) y en los vertebrados (p. 74) se encuentran generalmente por fuera del sistema nervioso central. Algunas masas de materia o sustancia gris ( \(\uparrow\) ) del cerebro se denominan ganglios.
red nerviosa, nerve net, red interconectada de células nerviosas ( \(p\). 149) que se encuentra en el cuerpo de algunos invertebrados (p. 75) para formar un sistema nervioso (p. 149) sencillo.
cerebro, brain ( \(n\) ), parte del sistema nervioso central (p. 149) que coordina las reacciones de todo el cuerpo del organismo. Se forma como una prolongación de la médula espinal ( \(\uparrow\) ) y está situado en el extremo anterior del cuerpo.

hemisferio cerebral, cerebral hemisphere, cada una del par de masas de materia gris (p. 155), debajo de las cuales se encuentra sustancia blanca (p. 155) que aparecen en el extremo anterior de la parte frontal del cerebro ( \(p .155\) ) y mediante las cuales se controlan muchas de las actividades de los animales Cada hemisferio controla acciones en el lado opuesto del cuerpo al que está situada.
corteza cerebral, cerebral cortex, materia gris (p. 155), llena de circunvoluciones, que forma parte de los hemisferios cerebrales \((\uparrow)\).
cuerpo calloso, corpus callosum, banda de fibras nerviosas ( p .149 ) que conecta los hemisferios cerebrales ( \(\uparrow\) ) permitiendo coordinar su acción.
bulbo raquídeo, medulla oblongata, continuación de la médula espinal (p. 154) con la región posterior del cerebro (p. 155). Contiene centros de materia gris (p. 155) que son responsables de controlar muchas de las funciones principales y reflejos ( \(p\). 153) del cuerpo; \(p\). ej.: el bulbo raquideo contiene el centro respiratorio (p.117).
cerebelo, cerebellum ( \(n\) ), parte del cerebro ( \(p .155\) ), situada entre el bulbo raquídeo ( \(\uparrow\) ) y los hemisferios cerebrales ( \(\uparrow\) ), que presenta muchas circunvoluciones y que es responsable de controlar la acción del músculo liso (p. 143), que es estimulada por los hemisferios cerebrales.
hipotálamo, hypothalamus (n), región de la parte anterior del cerebro ( \(p\). 155) que es responsable de controlar y regular las funciones metabólicas ( \(p .26\) ), tales como temperatura corporal, comida, bebida, excreción (p. 134). Controla también la actividad de la pituitaria ( \(\downarrow\) ).
talamo, thalamus (n), parte del cerebro (p. 155) que transporta y coordina impulsos nerviosos (p. 150) desde los hemisferios cerebrales ( \(\uparrow\) )
pituitaria, pituitary gland, glándula (p. 87) del cerebro (p. 155) que secreta (p. 106) varias hormonas (p. 130), que a su vez estimulan la secreción de hormonas desde otras glándulas para afectar a procesos metabolicos (p. 26), tales como el crecimiento, la secreción de adrenalina (p. 152), la producción de leche, etc.
glándula pineal, pineal body, glándula (p. 87) que aparece como una excrecencia en la parte superior del cerebro (p. 155) y que puede ser responsable de la secreción (p. 106) de una hormona (p. 130) asociada con el cambio de color.
 tidos situados a ambos lados de la cabeza de los vertebrados ( \(p .74\) ), que son usados para oír ( \(p .159\) ) y como órgano del equilibrio ( \(p .159\) )
oído externo, outer ear, tubo que conduce desde e exterior de la cabeza al timpano (p. 158). En los anfibios (p.77) y algunos reptiles ( \(p .78\) ) no existe, debido a que el tímpano está situado en la superficie de la piel.
pabellón auditivo, pinna ( \(n\) ), parte del oıdo externo \((\uparrow\) ) presente en los mamíferos (p. 80), situada en el exterior de la cabeza y consistente en un pliegue de piel y cartilago ( p .90 ) que ayuda a dirigir el sonido hacia el oído ( \(\uparrow\) )
oído interno, inner ear, parte más interna del oíd (p.157) que está situada dentro del craneo y que detecta los sonidos, asi como la posicion del animal en relación a la gravedad y la aceleración, permitien dole así equilibrarse. Esta lleno de un fluido y conec tado al cerebro (p. 155) mediante un nervio auditivo (p. 149), de modo que es capaz de convertir las on das de sonido en impulsos nerviosos (p. 150). Esta formado por un aberinto de tubos membranoso formado por un situados dentro de cavidades óseas.
oído medio, middle ear, cavidad Ilena de aire situada entre oído oxterno (p.157) y el oido interno ( \(\uparrow\) ) Está separado del oído externo por el tímpano ( \(\downarrow\) ) y en los mamíferos ( p .80 ) contiene tres pequeños huesos o huesecillos \((\downarrow)\)
tímpano = membrana timpánica.
membrana timpánica, eardrum ( \(n\) ), membrana ( \(p .14\) ) doble y delgada de la epidermis (p.131) que separa el oído externo (p. 157) del oido medio ( \(\uparrow\) ) y que vibra por acción de las ondas sonoras. Estas vibraciones son transmitidas entonces a través del oído medio, donde se amplía su intensidad, hacia el oído interno \((\uparrow)\). Llamada también tímpano.
ventana oval, fenestra ovalis, pequeña ventana membranosa (p 14) de forma ovalada que conecta el oí do medio \((\uparrow)\) con el oído interno ( \(\uparrow\) ), permitiendo que las vibraciones procedentes del tímpano ( \(\uparrow\) ) se transmitan al oído interno. Es veinte veces más pequeña que el tímpano, de modo que aumenta la intensidad de las vibraciones
ventana redonda, fenestra rotunda, pequeña ventana membranosa (p.14) de forma redondeada que conecta el oído interno \((\uparrow)\) con el oído medio \((\uparrow)\) y que se bombea hacia este último cuando las vibraciones de la ventana oval \((\uparrow)\) causan aumentos de presión en el oído interno
huesecillo del oído, ear ossicle, cualesquiera de los tres pequeños huesos que hay en el oído medio ( \(\uparrow\) ) de los mamíferos (p.80) y que, actuando como palancas, transmiten y aumentan la intensidad de las vibraciones producidas por el tímpano \((\uparrow)\) y las transmiten al oído interno ( \(\uparrow\) )
martillo, malleus ( \(n\) ), huesecillo del oído ( \(\uparrow\) ) en forma de martillo que está conectado con el tímpano ( \(\uparrow\) ) yunque, incus ( \(n\) ), huesecillo del oído ( \(\uparrow\) ) en forma de yunque, situado entre el martillo ( \(\uparrow\) ) y el estribo ( \(\downarrow\) ).
estribo, stapes ( \(n\) ), huesecillo del oído ( \(\uparrow\) ) en forma de estribo y que está conectado con la ventana oval ( \(\uparrow\) )
corte por la cóclea

trompa de Eustaquio, Eustachian tube, tubo que conecta el oído medio ( \(\uparrow\) ) con la parte posterior de garganta. Normalmente está cerrada, pero al boste zar o tragar se abre para equilibrar la presión a ambos lados del tímpano ( \(\uparrow\) ), evitando así su rotura
aparato vestibular, vestibular apparatus, aparato contenido en una cavidad del oído interno ( \(\uparrow\) ), inmediatamente por encima y por detras de la ventana oval \((\uparrow)\), que contiene los órganos relacionados con el equilibrio y la postura.
cóclea, cochlea ( \(n\) ), tubo en espiral, que es una proyección del sáculo (p.160) y que se encuentra dentro del oído interno ( \(\uparrow\) ). Está relacionado con la percepción del tono \((\downarrow)\) de las ondas de sonido que entran en el oído (p. 157)
oído \({ }^{2}\), hearing \((n)\), sentido mediante el que las ondas de sonido entran en el oído externo (p. 157) y hacen vibrar al timpano ( \(\uparrow\) ). A su vez, estas vibraciones son transmitidas a traves del oído medio ( \(\uparrow\) ) y pa san al oido interno ( \(\uparrow\) ), donde son convertidas en mpulsos nerviosos ( p .150 ) y transmitidos al cerebro (p. 155)
intensidad, intensity ( \(n\) ), grado de ruido o silencio de un sonido: Si el que entra en el oído (p. 157) es muy fuerte, los músculos (p. 143) fijados a los huesecillos del oído ( \(\uparrow\) ) impiden que vibren demasiado
tono, pitch ( \(n\) ), grado de altura de un sonido, que depende de su frecuencia - las ondas de alta frecuencia son denominadas altas, y viceversa-. Las diferentes partes de la coclea ( \(\uparrow\) ) responden a los sonidos de distinto tono.
canales semicirculares
canales

utrículo

\section*{huesecillos del oído}

ampolla, ampulla (n), engrosamiento dei extremo de ampolla cada uno de los canales semicirculares (p. 159). Alberga una cúpula ( \(\downarrow\) ) gelatinosa, pelos sensoriales y células receptoras (p. 153) que son responsables de transmitir información al cerebro (p. 155) a través del nervio auditivo
utrículo, utricle ( \(n\) ), saco lleno de fluido, situado dentro del oído interno (p. 158), desde el cual se elevan los canales semicirculares (p. 159). Dentro del fluido del utrículo hay otolitos \((\downarrow)\) de carbonato cálcico. Si se bascula la cabeza, los otolitos son empujados hacia abajo por gravedad y empujan las fibras sensoriales fijadas a la pared del utrículo.

sáculo, saccule ( \(n\) ), cavidad inferior llena de líquido situada en el oído interno (p. 158) y desde la cual se eleva la cóclea (p. 159). Lo mismo que el utrículo \((\uparrow)\), contiene también otolitos \((\downarrow)\), que responden a la orientación de la cabeza con respecto a la fuerza de la gravedad.
cúpula, cupula ( \(n\) ), cuerpo gelatinoso que forma parte de la ampolla ( \(\uparrow\) ) y que es desplazada por el fluido que se mueve en respuesta a la posición que tenga la cabeza
otolito, otolith ( \(n\) ), cada uno de los gránulos de carbonato cálcico presentes en el fluido del utrículo ( \(\uparrow\) ) y del sáculo ( \(\uparrow\) ), que responden a los movimientos basculantes de la cabeza mediante la fuerza de gravedad.
ojo, eye ( \(n\) ), órgano del sentido de la vista que es sensible a la dirección y la intensidad de la luz y que, en vertebrados ( \(p .74\) ), es también capaz de formar imágenes complejas del mundo exterior, que son transmitidas al cerebro ( \(p\). 155) a través del nervio óptico (p. 149). Los ojos de la mayoría de los animales tienen forma esférica y en los vertebrados están contenidos en depresiones del cráneo, a las que son fijados mediante músculos (p. 143)
retina, retina ( \(n\) ), capa interna fotosensible del ojo ( \(\uparrow\) ) que contiene receptores (p. 153) en forma de bastón y receptores en forma de cono. Las fibras nerviosas (p. 149) salen de la retina y se unen para formar el nervio óptico.
capa coroide, choroid layer, capa de tejido que rodea al ojo ( \(\uparrow\) ) situada entre la retina ( \(\uparrow\) ) y la esclerótica \((\downarrow)\). Contiene pigmentos ( p .126 ) para reducir los reflejos dentro del ojo y vasos (p.127) sanguíneos que flejos dentro del ojo y vasos
suministran oxigeno al ojo.
ojo humano

esclerótica, sclerotic layer, capa no elástica, fibrosa p. 143) y dura que rodea y protege al ojo ( \(\uparrow\) ), y es continua con la córnea \((\downarrow)\).
córnea, cornea ( \(n\) ), zona discoidal situada en la parte frontal del ojo ( \(\uparrow\) ), que es continua con la esclerótica \((\uparrow)\) y transparente a la luz. Presenta una curvatura, de modo que la luz que la atraviesa es refractada y comienza a converger antes de llegar al cristalino (p.162). De hecho, en los mamíferos (p. 80) terrestres, es el principal elemento de enfoque del ojo.

cristalino, lens ( \(n\) ), disco transparente convexo por ambas caras y que va unido al cuerpo ciliar \((\downarrow)\) mediante ligamentos suspensorios \((\downarrow)\). Consiste en un material gelatinoso elástico mantenido por una membrana. Cuando los músculos ciliares \((\downarrow)\) se contraen, aumenta la convexidad del cristalino, de modo que los rayos de luz que penetran en el ojo pueden ser enfocados sobre la retina ( p .160 ). Esto permite al ojo (p. 160) enfocar con precisión.
refracción, refraction ( \(n\) ), cambio en la dirección de la luz que se produce cuando atraviesa el límite entre dos sustancias.
convexo, convex (adj.), dícese de un cristalino que concentra la luz que pasa a través suyo.
cóncavo, concave (adj.), dícese de un cristalino que dispersa la luz que pasa a través suyo en lugar de concentrarla. Véase también convexo ( \(\uparrow\) ).
ligamento suspensorio, suspensory ligament, ligamento (p. 146) fibroso (p. 143) que mantiene al cristalino ( \(\uparrow\) ) en posición
cuerpo ciliar, ciliary body, borde exterior engrosado y circular de la coroides (p.160), situado en la parte anterior del ojo, y que contiene los músculos ciliares con los que se fija el cristalino ( \(\uparrow\) ). Contiene, asimismo, glándulas ( p .87 ) que secretan ( p .106 ) el humo acuoso ( \(\downarrow\) )
músculos ciliares, ciliary muscles. Véase también cuerpo ciliar ( \(\uparrow\) ).
iris, iris ( \(n\) ), anillo de tejido (p. 83) opaco que es continuo con la coroides (p.160) y que tiene un agujero o pupila \((\downarrow)\), en su centro, a través del cual puede pasar la luz. Hay músculos circulares (p. 143) y músculos radiales que rodean la pupila, aumentando o disminuyendo su tamaño según sea la intensidad de la luz.
pupila, pupil ( \(n\) ), agujero del centro del iris ( \(\uparrow\) ) a tra- \({ }^{-1}\) vés del cual la luz penetra en el ojo ( \(p .160\) ). Suele ser circular, pero en algunos animales puede tener otras formas.
refracción


\section*{lente}


cono \({ }^{\text {a }}\), cone ( \(n\) ), cada uno de los receptores (p. 153) de luz de forma cónica presentes en la retina (p. 160). Los conos contienen tres pigmentos (p.126) diferentes que son sensibles a la luz roja, verde y azul, de modo que los conos son los principales responsables de la vision del color. Se concentran principalmente en y alreded r de la fóvea \((\downarrow)\) y no aparecen en el borde de la retina. Son también receptores de luz de alta intensidad.
fóvea, fovea \((n)\), pequeña depresión central de la retina ( \(p .160\) ) en la que se concentran la mayoría de las células receptoras (p. 153), en especial los conos \((\uparrow)\). Está directamente opuesta al cristalino y proporciona la zona principal de visión diurna ( \(\downarrow\) ) aguda y precisa.
visión diurna, daylight vision, visión de gran nitidez que tiene lugar con luz brillante, ya que la mayor parte de la que entra en el ojo (p. 160) incide sobre la fóvea ( \(\uparrow\) ).
bastón, rod ( \(n\) ), cada uno de los receptores (p. 153) de luz, en forma de bastón, presentes en la retina (p. 160), que son mucho más sensibles a la luz de baja intensidad, pero no al color. No están presentes en la fóvea ( \(\uparrow\) ) y su número aumenta hacia los bordes de la retina. Son también sensibles a los movimientos.
visión nocturna, night vision, visión que tiene lugar en luz de baja intensidad utilizando los bastones ( \(\uparrow\) )
humor acuoso, aqueous humour ( \(n\) ), fluido acuoso que llena el espacio situado entre la córnea (p. 161) y el humor vítreo ( \(\downarrow\) ), y en el que están el cristalino \((\uparrow)\) y el iris \((\uparrow)\). Es secretado (p. 106) por glándulas (p. 87) del cuerpo ciliar ( \(\uparrow\) ).
humor vítreo, vitreous humour, fluido gelatinoso que llena el espacio que hay detrás del cristalino ( \(\uparrow\) ).
mancha ciega, blind-spot, zona de la retina (p. 160) desde la que el nervio óptico (p. 149) abandona el ojo. No contiene bastones ( \(\uparrow\) ) ni conos ( \(\uparrow\) ), por lo que en esta parte de la retina no se registra ninguna imagen.
comportamiento, behaviour ( \(n\) ), toda actividad observable realizada por un animal en respuesta a su medio (p. 218) externo e interno.
etología, ethology ( \(n\) ), estudio o ciencia del comportamiento ( \(\uparrow\) ) de los animales en su medio (p.218) natural.
comportamiento instintivo, instinctive behaviour, comportamiento ( \(\uparrow\) ) que se cree que está controlado por genes (p. 196) y que no resulta afectado por la experiencia; p. ej.: el comportamiento del cortejo de muchos animales, tales como los peces y las aves, es estimulado por una señal particular, siempre que el animal sea sexualmente maduro y tenga en su cuerpo el nivel apropiado de hormonas sexuales (p.130).
comportamiento innato, innate behaviour, comportamiento ( \(\uparrow\) ) que no necesita ser aprendido. Véase también comportamiento instintivo ( \(\uparrow\) ).
comportamiento aprendido, learned behaviour, comportamiento ( \(\uparrow\) ) en el que la respuesta a los estímulos viene afectada por la experiencia del animal para sacar el máximo provecho de la situación.
habituación, habituation (n), comportamiento aprendido ( \(\uparrow\) ) en el que la respuesta a un estímulo se reduce debido a la repetición constante del estímulo.
aprendizaje por asociación, associative learning, comportamiento aprendido ( \(\uparrow\) ) en el que el animal aprende a asociar un estímulo con otro, que normalmente produce un acto reflejo (p. 152); p. ej.: los perros responden a la vista del alimento, secretando saliva. Los perros de Pavlov aprendieron a asociar la vista de la comida con el sonido de una campana y después producían saliva al escuchar la campana, aunque no vieran la comida.
impregnación, imprinting ( \(n\) ), comportamiento aprendido ( \(\uparrow\) ) que se produce durante las primeras etapas de la vida de un animal, de muy breve duración, de modo que el animal, p. ej., continúa siguiendo al primer objeto que atrajo su atención por la vista, el oído, el olor o el tacto. Este objeto suelen ser los padres.
exploración, exploration ( \(n\) ), proceso mediante el cua los animales aprenden cosas de su medio (p. 218) mientras son jóvenes, mediante el juego y el contacto con otros animales
orientación, orientation (n), aćto reflejo (p. 152) en el que los animales cambian la posición de parte o de la totalidad de su cuerpo en respuesta a un estímulo; p. ej.: un animal puede girar la cabeza o levantar las orejas en respuesta a un sonido súbito o inusual.
desencadenante, releaser ( \(n\) ), estímulo que desencadena el comportamiento instintivo ( \(\uparrow\) ) de un animal.

metamorfosis completa p. ej.: mariposa
( ) huevo

crecimiento, growth ( \(n\) ), aumento permanente del ta maño y la masa seca de un organismo que tiene lugar cuando las células absorben (p. 81) materiales, se dilatan y después se dividen. La absorción tem poral de agua no puede considerarse como creci miento.
velocidad de crecimiento, growth rate, cantidad de crecimiento que se produce en una unidad dada de tiempo.
metamorfosis incompleta, incomplete metamorphosis, cambio que tiene lugar desde la forma juvenil a a adulta y en la que el joven se parece mucho a adulto.
instar, instar (n), estado intermedio entre dos fases de la metamorfosis de un insecto
ecdisis, ecdysis ( \(n\) ), desprendimiento periódico de la cuticula ( p .145 ) externa que permite el crecimiento y que tiene lugar entre las distintas etapas de la metamorfosis incompleta ( \(\uparrow\) ).
ninfa, nymph ( \(n\) ), primera etapa, o fase juvenil de un insecto (p.69), que es pequeño, sexualmente inmaduro e incapaz de volar.
metamorfosis completa, complete metamorphosis cambio que tiene lugar desde la forma juvenil a la adulta y en el que el joven no se parece al adulto; puede tener lugar a través de una fase de pupa \((\downarrow)\)
larva, larva ( \(n\) ), fase inmadura en el ciclo vital de un animal; p. ej.: un insecto (p.69) que experimenta metamorfosis (p.70). La larva suele ser diferente al adulto, tanto en su estructura como en el aspecto. Eclosiona del huevo y es capaz de defenderse por sí misma. larvario (adj.).
pupa, pupa ( \(n\) ), fase entre la larva ( \(\uparrow\) ) y el adulto en un insecto ( \(p .69\) ), en la que se interrumpen el movimiento y la alimentación y tiene lugar una metamorfosis (p.70).
imago, imago ( \(n\) ), fase adulta, sexualmente madura, en el desarrollo de un insecto (p.69).
cuerpos alados, corpora allata, par de glándulas (p.87) situadas en la cabeza de un insecto (p.69) que segregan ( \(p .106\) ) una hormona ( \(p .130\) ) que estimula el crecimiento de las estructuras larvarias ( \(\uparrow\) ) e inhibe las del adulto
glándulas de la muda, ecdysial glands, par de glándulas ( \(p\). 87) de la cabeza de un insecto (p. 69) que secretan ( \(p .106\) ) una hormona ( \(p .130\) ) que estimula la ecdisis \((\uparrow)\), o muda, y el crecimiento.
morfogénesis, morphogenesis ( \(n\) ), proceso en el que se desarrolla la forma global de los órganos de un organismo, conduciendo al desarrollo de todo el organismo.
diferenciación, differentiation ( \(n\) ), proceso en el que las células (no especializadas) cambian de forma y de función, durante el desarrollo del organismo, para dar los diferentes tipos de células especializadas que caracterizan al organismo.
neotenia, neotony ( \(n\) ), mantenimiento en algunos animales de caracteres larvarios (p. 165) o embrionarios ( \(\downarrow\) ) ya sea de modo temporal o permanente rios ( \(\downarrow\) ) ya sea de modo tenporalo permanente después de la fase en la que normalmente deberían haberlos perdido. Se cree que es importante en el
desarrollo evolutivo (p. 208); p. ej.: los seres humanos mantienen ciertas caracteristicas que recuerdan a los primates jóvenes.
embriología, embriology ( \(n\) ), ciencia o estudio de los embriones ( \(\uparrow\) ).
embrión, embryo ( \(n\) ), fase en el desarrollo de un organismo comprendida entre el cigoto \((\downarrow)\) y la eclosión, el nacimiento o la germinación (p. 168). embrionario (adj.).
cigoto, zygote ( \(n\) ), célula diploide ( \(p .36\) ), que es el re sultado de la fusión de.un gameto ( \(p\). 175) masculino haploide ( \(p .36\) ), o espermatozoide, y un gameto femenino haploide, o huevo (pp. 178 y 190).
segmentación, cleavage ( \(n\) ), proceso en el que los núcleos (p. 13) y el citoplasma ( p .10 ) del cigoto ( \(\uparrow\) ) fertilizado ( \(p .175\) ) se dividen mitóticamente ( \(p .37\) ) para formar células separadas.
blástula, blastula (n), estructura embric naria ( \(\uparrow\) ) ○ masa de pequeñas células que resultar de la segmentación ( \(\uparrow\) ).
blastocele, blastocoel ( \(n\) ), cavidad que se produce en el centro de una blástula ( \(\uparrow\) ) durante las etapas finales de la segmentación ( \(\uparrow\) )
gastrulación, gastrulation ( \(n\) ), proceso ciue sigue a la segmentación ( \(\uparrow\) ) en el que se producen movimientos celulares para formar una gástrula ( \(\downarrow\) ), que eventualmente conducirá a la formaciór de los órganos principales del animal. En los casos sencillos, parte de la pared de la blástula ( \(\uparrow\) ) se pliega hacia el interior para formar una gástrula hueca
gástrula, gastrula ( \(n\) ), fase en el desarrollo de un embrión ( \(\uparrow\) ) animal que comprende una pared de dos capas de células que rodea una cavidad, conocida como arquénteron
ectodermo, ectoderm ( \(n\) ), capa germinal ( \(\downarrow\) ) externa de un embrión \((\uparrow)\) que al desarrollarse produce el pelo, varias glándulas (p. 87), el SNC, la mucosa bucal, etcétera.
endodermo, endoderm ( \(n\) ), capa germinal ( \(\downarrow\) ) interna del embrión \((\uparrow)\) que al desarrollarse produce la mucosa intestinal y sus órganos asociados


organogenia, organogeny (n), formación de los órga nos durante el crecimiento. organogénesis ( \(n\) ).
notocorda, notochord ( \(n\) ), barra esquelética ( \(p .145\) ) flexible, presente en alguna fase del desarrollo de todos los cordados (p. 74). Se extiende desde el sis tema nervioso central (p. 149) hasta el intestino (p. 98) y en los vertebrados (p. 74) persiste como un resto en la medula ósea durante toda la vida del animal, aunque está presente sobre todo durante el de sarrollo del embrión ( \(\uparrow\) ).
tubo neural, neural tube, parte del cerebro (p. 155) y de la columna vertebral ( \(p\). 74) que se forma durante el crecimiento del embrión ( \(\uparrow\) )
mesodermo, mesoderm ( \(n\) ), capa germinal ( \(\downarrow\) ) situada entre el ectodermo ( \(\uparrow\) ) y el endodermo ( \(\uparrow\) ) y que da lugar al tejido conjuntivo (p. 88), la sangre (p. 90) los músculos (p.143), eto
capa germinal germ layer, una de las dos o tres capas principales de células que pueden verse en un embrión \((\uparrow)\) después de la gastrulación \((\uparrow)\). El endodermo \((\uparrow)\), el ectodermo \((\uparrow)\) y el mesodermo \((\uparrow)\) son capas germinales.
celoma, coelom ( \(n\) ), cavidad Ilena de fluido en el mesodermo ( \(\uparrow\) ) de los animales tripoblásticos (p.62) que en los animales superiores constituye la principal cavidad del cuerpo en la que están suspendidos el intestino (p.98) y otros órganos, de modo que sus contracciones musculares (p. 143) pueden ser independientes de las de la pared corporal
somito, somite ( \(n\) ), cualesquiera de los bloques de tejido (p. 83) mesodérmico ( \(\uparrow\) ) que flanquea la noto corda ( \(\uparrow\) ) en forma de tiras paralelas, y que se desarrollan en bloques de músculos (p. 143), partes de los riñones ( \(p .136\) ) y partes del esqueleto axia (p. 145)
miotomo, myotome ( \(n\) ), parte integrante de un somito \((\uparrow)\) que se desarrolla en tejido (p. 83) muscular (D. 143) estriado
germinación, germination ( \(n\) ) primer signo externo del crecimiento de las semillas o esporas (p.178) de una planta, que tiene lugar cuando las condiciones de humedad, temperatura, luz y oxígeno son adecuadas germinar (v)
fase de hidratación, hydration phase, fase de la germinación \((\uparrow)\) en la que la semilla absorbe ( \(p .81\) ) agua y comienza la actividad del citoplasma (p.10).
fase metabólica, metabolic phase, fase de la germinación ( \(\uparrow\) ) en la que, bajo control enzimático ( p .28 ), el agua absorbida ( p .81 ) durante la fase de hidratación ( \(\uparrow\) ) hidroliza (p.16) los materiales alimenticios de reserva, en los materialés necesarios para el crecimiento.
plúmula, plumule ( \(n\) ), primer tallo y hojas apicales \((\downarrow)\) que forman parte del brote embrionario ( \(p\). 166) de un espermatofito ( \(p .57\) ).
radícula, radicle ( \(n\) ), primera raíz del espermatofito (p. 57) embrionario (p. 166), que más tarde se desarrolla en el sistema radical de la planta.
cotiledón, cotyledon \((n)\), primera estructura sencilla, parecida a una hoja, que se forma dentro de una semilla. Unas plantas, p. ej., las hierbas y los cereales, solo tienen uno y se llaman monocotiledóneas (p.58), mientras que otras tienen dos y se llaman dicotiledóneas (p.57). Los cotiledones no contienen clorofila ( \(p\). 12) al principio y pueden funcionar como reserva alimenticia para la germinación \((\uparrow)\) de la planta, pero en la mayoría de las dicotiledóneas los cotiledones emergen por encima de la superficie del suelo, se vuelven verdes y fotosintetizan ( \(p .93\) ).
endospermo, endosperm (n), capa de tejido (p.83) que rodea al embrión ( \(p .166\) ) en algunos espermatofitos (p.57). Proporciona nutrición al embrión en desarrollo, pero en algunas plantas, p. ej., guisantes y judías, ha sido absorbido ( \(p .81\) ) por los cotiledones ( \(\uparrow\) ) en el momento en que la semilla se ha desarrollado por completo, pero en otras, tales como el trigo, no es absorbido hasta que la semilla del mismo germina ( \(\uparrow\) )
tegumento seminal, testa ( \(n\) ), revestimiento protector, duro y rígido, que rodea la semilla y la protege contra el daño mecánico o la invasión de hongos (p. 46) y bacterias.
epicótilo, epicotyl ( \(n\) ), parte de la plúmula ( \(\uparrow\) ) que se encuentra situada por encima del punto de unión de los cotiledones ( \(\uparrow\) )
hipocótilo, hypocotyl ( \(n\) ), parte de la plúmula ( \(\uparrow\) ) que se encuentra situada por debajo del punto de unión de los cotiledones ( \(\uparrow\) ).

\section*{tipos de semillas}

\section*{cotiledóneas}
nutrientes almacenados en los cotiledones


\section*{endospérmicas}
la mayoría de los nutrientes almacenados en el endospermo p. ej.: maíz

germinación hipogea, hypogeal germination, germinación ( \(\uparrow\) ) en la que los cotiledones ( \(\uparrow\) ) permanecen por debajo de la superficie del suelo; \(p\). ej.: en las habas.
germinación epigea, epigeal germination, germinación \((\uparrow)\) en la que los cotiledones ( \(\uparrow\) ) emergen por encima de la superficie del suelo y forman las primeras hojas seminales fotosintéticas; p. ej.: en las lechugas.

meristemo, meristem ( \(n\) ), parte de una planta en crecimiento donde las células se dividen y se forma nuevo tejido ( p .83 ) permanente de la planta.
meristemo apical, apical meristem, meristemo ( \(\uparrow\) ) presente en los brotes y en el ápice de la raíz. La división de estas células, que son pequeñas y contienen citoplasma ( p .10 ) granular con pequeñas vacuolas (p. 11), da como resultado el crecimiento de los tallos y de las raíces
ápice, apex ( \(n\) ), parte superior o extremo en punta de un objeto. apical (adj.).
meristemo lateral, lateral meristem, meristemo (p. 169), incluidos el cambium (p. 86) y el felógeno (p. 172), que se presenta a lo largo de las raices y de los tallos de las plantas dicotiledóneas (p.57) y que está formado por células delgadas y alargadas que dan lugar a xilema (p. 84) y floema (p. 84).
lateral, lateral (adj.), sobre, al lado de algo
meristemo fundamental, ground meristem, parte del meristemo apical (p. 169), a partir de la cual se forman la médula ( \(p .86\) ), la corteza ( \(p .86\) ), los radios medulares ( \(p .86\) ) y el mesófilo ( \(p .86\) )
túnica, tunica ( \(n\) ), una de las dos capas de tejido ( p .83 ) que comprende el meristemo apical (p. 169). Es la capa externa de tejido y, a su vez, puede estar formada por una o más capas de células en las que la división se produce en ángulo recto con respecto a la superficie de la planta (anticlinal)
cuerpo, corpus ( \(n\) ), una de las dos capas de tejido (p. 83) que comprende el meristemo apical (p. 169). Es la capa interna de tejido y la división de las células sucede de manera irreqular
zona de división celular, zone of cell division, parte del ápice (p. 169) de una raíz o un brote que incluye el meristemo apical (p. 169) y el primordio foliar ( \(\downarrow\) ) o la caliptra (p. 81).
zona de expansión, zone of expansion, parte del ápice (p. 169) de una raíz, o brote situada detrás de la zona de división celular ( \(\uparrow\) ) y en la que las células se alargan y agrandan.
zona de diferenciación, zone of differentiation, parte del ápice ( \(p .169\) ) de una raíz o brote que está detrás de la zona de expansión ( \(\uparrow\) ) y en la que las células se diferencian en la forma y la función de las partes de la planta que lo caracterizan.
primordio, primordium ( \(n\) ), grupo de células del ápice de un brote o raíz que se diferencia en una hoja, etc.
crecimiento primario, primary growth, crecimiento que tiene lugar sólo en los meristemos (p. 169) que estaban presentes en el embrión (p. 166). Incluyen éstos los meristemos apicales (p. 169), y el resultado es principalmente un aumento de longitud
crecimiento secundario, secondary growth, crecimiento que tiene lugar en los meristemos laterales \((\uparrow)\) y que da por resultado un aumento de grosor más que de longitud.


fascicular, fascicular (adj.), dícese del cambium (p. 86) meristemático (p. 169) que está situado entre el xilema (p. 84) y el floema (p. 84), en el tejido (p. 83) vascular.
interfascicular, interfascicular (adj.). dicese del cambium (p.84) meristemático (p. 169) que consiste de una única capa de células que se dividen activa mente, situada entre los haces de floema (p.84) y de xilema ( \(p .84\) ) en los tallos
xilema secundario, secondary xylem, xilema (p. 84) que ha sido formado por el cambium vascular (p. 86) después de la formación de los tejidos (p.83) primarios.
floema secundario, secundary phloem, floema (p. 84) que ha sido producido por el cambium (p.86) después de la formación de los tejidos ( \(p .83\) ) primarios.
anillos anuales, annual rings, anillos de madera más clara y más oscura que pueden verse en un corte transversal del tronco de un árbol que vive en climas templados. Cada par marca el aumento anual en e grosor del árbol como resultado de la actividad del cambium (p. 86). El anillo más claro es tejido (p. 83) de xilema (p.84) de células grandes producido en de xilema ( \(p .84\) ) de celulas grandes producido en
primavera y la madera más oscura es la de verano, primavera y la madera más
felógeno, phellogen ( \(n\) ), capa de células situada inme diatamente por debajo de la epidermis (p. 131) de los tallos sometidos a crecimiento secundario. Es un meristemo lateral (p.170), cuyas células dan lugar al felema ( \(\downarrow\) ) y al felodermo ( \(\downarrow\) ).
corteza, bark (n), capa externa protectora de los tallos de las plantas leñosas. Puede constar de células de corcho solas o alternando con floema ( \(p .84\) ) muerto
corcho, \(\operatorname{cork}(n)=\) felema \((\downarrow)\).
felema, phellem ( \(n\) ), capa externa de células impermeables muertas, formada a partir de la actividad del felógeno ( \(\uparrow\) ) en los tallos de las plantas leñosas.
felodermo, phelloderm ( \(n\) ), capa interna de la corteza \((\uparrow)\) producida por la actividad del felógeno ( \(\uparrow\) ).
suberina, suberin ( \(n\) ), mezcla de sustancias derivada de ácidos grasos (p.20) y presente en las paredes del felema ( \(\uparrow\) ), volviendo así impermeables a estas células.
exógeno, exogenous (adj.), dícese de la ramificación generada en el exterior de la planta.
endógeno, endogenous (adj.), dícese de la ramificación generada en el interior de la planta.

reproducción, reproduction ( \(n\) ) medio mediante el cual los organismos garantizan la existencia continuada de la especie (p.40) más allá de la duración de la vida de los individuos, generando nuevos individuos.
reproducción sexual, sexual reproduction, generación de nuevos individuos de un organismo para continuar la vida de la especie (p. 40) mediante fusión de núcleos ( \(p .13\) ) haploides ( \(p .36\) ) o gametos ( \(p .175\) ) para formar un cigoto ( p .166 ). En la mayoria de los animales, un espermatozoo (p. 188) masculino muy móvil generado en los testículos (p. 187) y producidos en gran cantidad, se une con un huevo (p. 190) femenino inmóvil producido en pequeño número en el ovario (p. 189)
reproducción asexual, asexual reproduction, generación de nuevos individuos de un organismo para continuar la vida de la especie (p. 40), a partir de un único parental por medios tales como gemación ( \(\downarrow\) ) o esporulación ( \(\downarrow\) ). La multiplicación es rápida y los vástagos son genéticamente ( \(p\). 191) idénticos unos a otros y al parental; p. ej.: la fisión binaria (p. 44) puede producirse muy rápidamente y es exponencial, de modo que una célula se divide en dos, dos en cuatro, cuatro en ocho, etc., y todas las células son idénticas a la célula madre.
móvil, motile (adj.), capaz de moverse. motilidad (n).
inmóvil, non-motile (adj.), incapaz de moverse
gemación, budding ( \(n\) ), reproducción asexual ( \(\uparrow\) ), típica de los corales (p.61) y de las esponjas, en la que el individuo parental produce una yema que se desarrolla en un nuevo individuo
fragmentación, fragmentation ( \(n\) ), reproducción asexual ( \(\uparrow\) ) que se presenta sólo en organismos primitivos, tales como esponjas y algas verdes (p.44), en la que los individuos parentales se dividen en trozos y cada fragmento se desarrolla para dar un nuevo individuo.
esporulación, sporulation (n), reproducción asexual \((\uparrow)\) típica de los hongos (p.46), en la que el individuo parental produce a menudo grandes cantidades de pequeñas estructuras unicelulares, por lo general ligeras, llamadas esporas (p. 178), que se separan del individuo parental y pueden ser diseminadas por el viento u otros mecanismos. Siempre que caigan en un lugar que posea las condiciones adecuadas, cada espora germina (p. 168) para producir un nuevo individuo.
propagación vegetativa, vegetative propagation, reproducción asexual (p, 173) que se presenta on plantas, en la que algunas de sus partes, tales como as hojas o incluso brotes especiales, se separan de a planta y se desarrollan para dar origen à un nuevo individuo.
órgano perdurante, perennating organ, cualquier estructura especial, que se encuentra en algunas plantas bienales ( \(p .58\) ) y perennes ( \(p .58\) ), que les permite sobrevivir a condiciones hostiles, tales como la sequía. Si se produce más de una estructura, se consigue también reproducción asexual (p. 173) Cuando las condiciones se deterioran, la planta muere, dejando sólo el órgano perdurante que cuando se reanudan las condiciones adecuadas, se desarrolla para dar uno o varios individuos nuevos
estolón, runner ( \(n\) ), órgano en forma de tallo que se desarrolla a partir de una yema axilar (p. 83), que crese por el suelo y que da origen a nuevos indivi duos de sus yemas axilares; únicamente ocurre en la yema terminal.
tallo estolonífero, stolon ( \(n\) ), órgano que toma la forma de una rama larga y erguida que eventualmente se dobla bajo su propio peso, toca el suelo y echa raíces. En la yema axilar (p.83) crece un nuevo bro te para dar un individuo nuevo
rizoma, rhizome ( \(n\) ), órgano perdurante ( \(\uparrow\) ) en el que el tallo de la planta permanece bajo tierra y continúa creciendo horizontalmente.
bulbo, bulb ( \(n\) ), órgano perdurante ( \(\uparrow\) ) que toma la forma de brote subterráneo con un corto tallo y hojas carnosas que estan muy juntas, se superponen y constituyen la reserva de alimento de la planta. En la base de cada hoja hay una yema que puede convertirse en un nuevo bulbo. En la época de crecimiento, la planta produce hojas y flores, y agota la reserva de alimento del bulbo. Pero la nueva planta fabrica más material alimenticio por fotosíntesis (p.93) y en a yema de la base de las hojas se forma uno o más bulbos nuevos
cormo, corm ( \(n\) ), órgano perdurante ( \(\uparrow\) ) que toma la forma de un tallo subterráneo especial, alargado y carnoso, que actúa como reserva de alimento.
tubérculo, tuber ( \(n\) ), órgano perdurante ( \(\uparrow\) ), similar a un rizoma ( \(\uparrow\) ), en el que el alimento se almacena en la raiz o en el tallo subterráneo en forma de engrosa mientos, que eventualmente pueden separarse de la planta madre.
 tallo estolonífero


2 el estolon viejo muere la planta madura produce


apomixia, apomixis \((n)\), reproducción asexual (p. 173) que recuerda superficialmente la reproducción sexual (p. 173), aunque no se producen fertilización \((\downarrow)\) ni meiosis (p.38). apomíctico (adj.).
fertilización, fertilization ( \(n\) ), proceso en la reproduc ción sexual ( \(p .173\) ) en el que el núcleo (p.13) de un gameto \((\downarrow)\) masculino haploide ( \(p .36\) ) se funde con el núcleo de un gameto femenino haploide para formar un cigoto ( \(p .166\) ) diploide ( \(p .36\) ).
fértil, fertile (adj.), dicese de organismos capaces de producir descendencia.
maduro, mature (adj.), totalmente crecido; totalmente desarrollado.
inmaduro, inmature (adj.), no maduro ( \(\uparrow\) )
gameto, gamete (n), célula reproductora (p. 173) o se xual. Cada gameto es haploide (p. 36) y los masculinos, o espermatozoos (p. 188), que son pequenos y moviles, se fusionan con los femeninos, o huevos (p. 190), de mayor tamaño e inmóviles, en el rpoceso de la fertilización ( \(\uparrow\) ) para formar cigotos ( \(p .166\) ) diploides (p.36), que son capaces de desarroliarse para dar nuevos individuos.
gametangio, gametangium ( \(n\) ), órgano que produce gametos ( \(\uparrow\) ).
singamia, syngamy ( \(n\) ), fusión real de dos gametos \((\uparrow)\) que tiene lugar durante la fertilización \((\uparrow)\).
isogametos, isogametes ( \(n . p l\).), gametos ( \(\uparrow\) ) produ cidos por algunos organismos; p. ej.: los hongos (p. 46), que no se diferencian en formas masculinas y femeninas. Todos los gametos producidos por e organismo son similares
anisogametos, anisogametes (n. pl.), gametos ( \(\uparrow\) ) que se diferencian de alguna manera, ya sea simple mente en el tamaño o en el tamaño y la forma
heterogametos, heterogametes (n. pl.), anisogametos \((\uparrow)\) que se diferencian por el tamaño y la forma en espermatozoos (p. 188) masculinos, pequeños y mó viles, que son producidos en gran número, y huevos (p. 190) femeninos, grandes e inmóviles.
oogamia, oogamy (n), fertilización ( \(\uparrow\) ) que tiene lugar por la unión de heterogametos ( \(\uparrow\) ).
dioico, dioecious (adj.), dícese de organismos en los que los organos sexuales se presentan en individuos distintos, que se designan como masculinos o femeninos.
monoico, monoecious (adj.), dícese de organismos en los que los órganos sexuales masculinos y femeninos aparecen sobre el mismo individuo
hermafrodita, hermaphrodite ( \(n\). adj.) = monoico ( \(\uparrow\) )
partenogenesis, parthenogenesis ( \(n\) ), reproduccion (p. 173) que tiene lugar en algunas plantas y animales, tales como el diente de leon y los afidos, en la que los gametos (p. 175) femeninos dan lugar a nuevos individuos sin haber sido fertilizados (p. 175). La descendencia en la partenogénesis son siempre hembras y, por lo general, genéticamente (p. 196) idénticas a la madre y unas con otras. Si el huevo (pp. 178 y 190) ha sido producido por meiosis, la descendencia es haploide (p. 36) y si lo ha sido por mitosis ( \(p .37\) ) es diploide ( \(p .36\) )
alternancia de generaciones, alternation of generations, ciclo vital de un organismo en el que la reproducción (p. 173) se alterna en cada generación entre reproducción sexual (p. 173) y asexual (p. 173). Se encuentra, p. ej., entre los Celentéreos ( \(p .60\) ), que tienen una fase pólipo ( \(p .61\) ) y otra medusa ( \(p .61\) ), y entre los briofitos (p.52), en los que los gametos (p. 175) haploides ( p .36 ) procedentes de una fase -gametofito \((\downarrow)\) se fusionan para formar un cigoto (p. 166) diploide (p.36) que germina, para dar lugar a un esporofito \((\downarrow)\), el cual, a su vez, produce esporas (p. 178) haploides por meiosis (p. 38). Éstas se convierten en la planta haploide (gametofito). Ca da una de las generaciones puede ser muy diversa en su forma.
generación, generation ( \(n\) ), conjunto de individuos en la misma fase de desarrollo o edad o el tiempo que tarda un individuo en reproducirse (p. 173) y la progenia (p. 200) en desarrollarse al mismo estado que los parentales.
haplonte, haplontic (adj.), dicese de un ciclo vital, que se encuentra en algunas algas (p.44) y hongos (p. 46), en el que una forma adulta haploide ( \(p .36\) ) se produce por meiosis (p.38) del cigoto (p. 166) diploide (p. 36).
diplonte, diplontic (adj.), dícese de un ciclo vital, que se encuentra en todos los animales, así como en algunas algas ( \(p .44\) ) y hongos ( \(p .46\) ), en el que los gametos ( \(p .175\) ) haploides ( \(p .36\) ) son producidos por meiosis ( p .38 ) a partir de los adultos diploides (p. 38).
diplohaplonte, diplohaplontic (adj.), dícese de un ciclo vital, que se encuentra en la mayoría de las plantas, en el que una generación de esporofito \((\downarrow)\) diploide (p. 36) alterna con otra de gametofito ( \(\downarrow\) ) haploide (p. 36)

alternancia de generaciones y división de las principales plantas
esporofito, sporophyte (n), fase de una alternancia de generaciones ( \(\uparrow\) ), que se encuentra en la mayoría de las plantas, en la que la planta diploide (p.36) produce esporas ( \(p .178\) ) por meiosis ( \(p .38\) ) que después germinan ( \(p .168\) ) para producir el gametofito ( \(\downarrow\) ).
gametofito, gametophyte ( \(n\) ), fase de una alternancia de generaciones ( \(\uparrow\) ), que se encuentra en la mayoría de las plantas, en la que la planta haploide (p.36) produce gametos (p. 175) por mitosis (p.37), que se fusionan para formar un cigoto ( \(p .166\) ), que se convierte en el esporofito \((\uparrow)\).
arquegonio, archegonium ( \(n\) ), órgano sexual femenino de las hepáticas (p.52), los musgos (p.52), las filicales (helechos) ( p .56 ) y la mayoría de las gimnospermas (p.57). Es una estructura pluricelular (p.9) en forma de botella, con el cuello estrecho y la base dilatada, que contiene el gameto (p. 175) femenino oosfera, oosphere ( \(n\) ), gameto (p. 175) femenino inmóvil, grande y desprotegido, que se encuentra en el arquegonio ( \(\uparrow\) )
huevo \({ }^{\text {p }}\), ovum (n), gameto ( p . 175) femenino haploide (p. 36).
anteridio, antheridium ( \(n\) ), órgano sexual masculino de las algas (p.44), las hepáticas (p.52), los musgos ( \(p .52\) ), los helechos ( \(p .56\) ) y los hongos ( \(p .46\) ) Puede ser unicelular (p.9) o pluricelular (p. 9) y produce pequeños gametos ( p .175 ) móviles, los anterozoides ( \(\downarrow\) ).
anterozoide, antherozoid (n), gameto (p. 175) masculino producido dentro del anteridio ( \(\uparrow\) )
espermatozoo, spermatozoid \((n)=\) anterozoide \((\uparrow)\).
esporogonio, sporogonium ( \(n\) ), generación esporofíti ca (p. 177) de los musgos (p. 52) y las hepáticas (p. 52), que produce la semilla y parasita (p.110) a la generación gametofítica (p. 177).
esporangio, sporangium (n); (1) órgano en el que, en la generación esporofítica (p. 177), se forman las esporas \((\downarrow)\) haploides (p.36) después de la división meiótica (p. 38) de las células madre de las esporas \((\downarrow)\); (2) en los hongos, ensanchamientos que se producen en los extremos de ciertas hifas (p.46), en los que el protoplasma ( \(p .10\) ) se descompone para formar esporas durante la reproducción asexual (p. 173).
espora, spore ( \(n\) ), diminuto cuerpo reproductor (p. 173) asexual, unicelular (p.9) o pluricelular (p.9). que producen en gran número los hongos (p.46) o los esporangios \((\uparrow)\) de las plantas
célula madre de la espora, spore mother cell. célula diploide (p.36) que da lugar a cuatro células haploides (p.36) por meiosis (p.38).
microesporangio, microsporangium (n), esporangio ( \(\uparrow\) ) presente en las plantas heterosporas (p.54) que produce y dispersa las microsporas \((\downarrow)\).
microspora, microspore ( \(n\) ), la más pequeña de los dos tipos diferentes de esporas ( \(\uparrow\) ) producidos por los helechos (p.56) y los espermatofitos (p. 57), que da lugar a la generación del gametofito (p. 177) mas culino.
microsporofilo, microsporophyll (n), hoja modificada que alberga al microesporangio ( \(\uparrow\) ).
megaesporangio, megasporangium ( \(n\) ), esporangio \((\uparrow)\) presente en las plantas heterosporas (p.54), que produce y dispersa las megasporas ( \(\downarrow\) ).
megaspora, megaspore ( \(n\) ), la mayor de los dos tipos diferentes de esporas ( \(\uparrow\) ) producidas por los helechos ( \(p .56\) ) y los espermatofitos ( \(p\). 57) y que da lugar a la generación del gametofito ( \(p\). 177) femenino.

\section*{plantas heterosporas} producción de megasporas el gametofito of se desarrolla dentro de las paredes
de la megaspora vieja

la megaspora se desarrolla arquegonios
megasporangio
megaspora
megasporofilo
conífera corte longitudina
en parte de un cono \(?\)

la megaspora se desarrolla en el gametofito \(\circ\) (saco embrionario)
megaspora
óvulo
joven
flor
androceo
estambres
gineceo
filamento antera estigma estilo

gineceo

carpelos libres (apocárpico) p. ej.: las Ranunculáceas

megaesporofilo, megasporophyll ( \(n\) ), hoja modificada que alberga al megaesporangio ( \(\uparrow\) ). Pueden agruparse en un estróbilo (p. 55)
flor, flower ( \(n\) ), estructura relacionada con la reproducción sexual (p. 173) en las angiospermas (p. 57). Es un brote vegetativo modificado
corola, corolla (n), parte de la flor formada por todos los pétalos ( \(\downarrow\) ). Varía considerablemente en cuanto a tamaño, configuración, forma y color, y a menudo atrae a los insectos ( p .69 ) para visitar la flor y que polinicen ( \(p\). 183) entonces la planta.
pétalo, petal ( \(n\) ), cada uno de los elementos, a menudo de color intenso y con olor, que constituyen la corola ( \(\uparrow\) ). Se cree que son hojas modificadas. Las flores polinizadas (p. 183) por el viento tienen pétalos de tamaño muy reducido o incluso han desaparecido.
cáliz, calyx (n), parte más externa de una flor, que comprende numerosos sépalos \((\downarrow)\) y que protege a la flor mientras que se desarrolla en ésta la fase de capullo.
sépalo, sepal ( \(n\) ), estructuras parecidas a una hoja, por lo general verdes y a menudo pilosas, que constituyen el cáliz ( \(\uparrow\) )
perianto, perianth ( \(n\) ), parte de la flor formada por la corola \((\uparrow)\) y el cáliz \((\uparrow)\), que rodea a los estambres (p. 181) y los carpelos \((\downarrow)\)
gineceo, gynoecium ( \(n\) ), estructura reproductora (p. 173) femenina de una flor, constituida por los carpelos \((\downarrow)\).
carpelo, carpel ( \(n\) ), cada una de las estructuras repro ductoras ( \(p .173\) ) femeninas de una planta que constituyen el gineceo ( \(\uparrow\) ). Cada carpelo está formado por un ovario ( \(p .180\) ), un estilo ( \(p\). 181) y un estigma (p. 181). Si hay más de un carpelo, pueden fusionarse o separarse.

carpelos fusionados (sincárpico) p. ej.: las Liliáceas

ovario \(^{p}\), ovary \((n)\), parte del carpelo ( \(p .179\) ) que contiene los óvulos ( \(\downarrow\) ).
óvulo \({ }^{\mathbf{p}}\), ovule ( \(n\) ), estructura que contiene los gametos
(p. 175) femeninos y que, después de la fertilización
(p. 175), se convierte en la semilla.
funículo, funicle ( \(n\) ), tallo que une la base del óvulo ( \(\uparrow\) ) a la pared del carpelo ( \(p\). 179)
placenta \({ }^{\mathrm{P}}\), placenta \((n)\), parte de la pared del ovario \((\uparrow)\) a la que se fijan los óvulos \((\uparrow)\).
apocárpico, apocarpous (adj.), dícese del gineceo (p. 179) en el que los carpelos ( \(p\). 179) no están fusionados.
sincárpico, syncarpous (adj.), dícese del gineceo (p. 179) en el que los carpelos (p. 179) están fusionados.
placentación, placentation ( \(n\) ), colocación y disposición de las placentas ( \(\uparrow\) ) en el gineceo ( \(p .179\) ) sincárpico ( \(\uparrow\) ).
parietal, parietal (adj.), dicese de la placentación ( \(\uparrow\) ) en la que los carpelos (p. 179) se fusionan sólo en sus bordes y las placentas ( \(\uparrow\) ) se convierten en crestas sobre la cara interna de la pared del ovario ( \(\uparrow\) ).
axilar, axile (adj.), dícese de la placentación ( \(\uparrow\) ) en la que los carpelos (p. 179) se doblan hacia el interior por sus bordes, se fusionan y se produce una placenta central.
libre central, free central, dícese de la placentación \((\uparrow)\) en la que la placenta ( \(\uparrow\) ) crece hacia arriba desde la base del ovario ( \(\uparrow\) ).
i nucela, nucellus ( \(n\) ), tejido ( \(p .83\) ) central del óvulo ( \(\uparrow\) ) que engloba la megaspora ( \(p\). 178) o el huevo (p. 178).
micropilo, micropyle ( \(n\) ), canal a través del integumento \((\downarrow)\), cerca del ápice del óvulo \((\uparrow)\), que en la semilla se convierte en un poro (p.120), a través de cual puede entrar agua para la germinación (p. 168).
integumento, integument ( \(n\) ), capa externa del óvulo ( \(\uparrow\) ) que forma la cubierta de la raíz.
calaza, chalaza (n), base del óvulo ( \(\uparrow\) ) a la cual se fija el funículo ( \(\uparrow\) ). Está situada en el punto donde la nucela ( \(\uparrow\) ) y los integumentos ( \(\uparrow\) ) se unen.
saco embrionario, embryo sac, célula grande de forma ovalada, rodeada de una delgada pared celular (p. 8) y situada en la nucela ( \(\uparrow\) ), en la que tiene lugar la fertilización (p. 175) del huevo (p.178) y se desarrolla el embrión (p. 166).
núcleos polares, polar nuclei, par de núcleos ( p .13 ) haploides ( \(p .36\) ) que se encuentran hacia el centro del saco embrionario ( \(\uparrow\) ).
célula huevo, egg cell, gameto (p. 175) femenino
estructura del ovario
saco embrionario

tipos de placentación corte a través de los ovarios para mostrar la estructura
interna

\(\qquad\)
central libre lóculo

partes florales masculinas saco de polen granos
(simetría radial)

flor cigomoría (simetria bilateral)

sinérgida, synergid ( \(n\) ), una de las dos células haploides (p.36) que existen en el extremo del micropilo \((\uparrow)\) del saco embrionario ( \(\uparrow\) ), cerca de la célula huevo ( \(\uparrow\) )
célula antipoda, antipodal cell, una de las tres células haploides ( \(p .36\) ) que se mueven hasta el extremo del saco embrionario ( \(\uparrow\) ), cerca de la calaza ( \(\uparrow\) ). No participan en la fertilización ( \(p .175\) ).
estilo, style ( \(n\) ), parte del carpelo ( \(p\). 179) que une el ovario ( \(\uparrow\) ) y el estigma ( \(\downarrow\) ).
estigma, stigma ( \(n\) ). punta receptora del carpelo (p. 179) a la cual se adhiere el polen ( \(\downarrow\) ) durante la polinizacion ( p .183 ).
androceo, androecium ( \(n\) ), estructura reproductora (p. 173) masculina de una flor, formada por los estambres \((\downarrow)\).
estambre, stamen (n), cada una de las estructuras re productoras (p. 173) masculinas que constituyen el androceo ( \(\uparrow\) ). Un estambre consta de una antera \((\downarrow)\) y un filamento \((\downarrow)\).
antera, anther ( \(n\) ). punta del estambre ( \(\uparrow\) ) que produce el polen \((\downarrow)\) que está contenido en los sacos polínicos ( \(\downarrow\) ).
filamento, filament ( \(n\) ); (1) tallo del estambre ( \(\uparrow\) ) al que se fija la antera ( \(\uparrow\) ); (2) en la planta, una cadena de células; \(p\). ej.: algunas algas (p.44) verdes son filamentosas; (3) en los animales, cualquier estructura delgada con aspecto de hilo
saco polínico, pollen sac, cámara en la que se forma el polen.
polen, pollen ( \(n\) ), microesporas (p. 178), con aspecto de grano, producidas en gran número en el saco polínico ( \(\uparrow\) ) por división meiótica ( \(p .38\) ) de sus células madre de las esporas (p. 178). Contienen los gametos (p. 175) masculinos.
célula del tapete, tapetal cell, cualesquiera de las células que forman una capa rodeando a las células madre de las esporas (p. 178) y que proporcionan nutrientes a las células madre de las esporas y a las esporas (p.178) en desarrollo.
núcleo generativo, generative nucleus, uno de los dos núcleos (p.13) que se encuentran en cada grano de polen \((\uparrow)\) y que son transferidos al óvulo \((\uparrow)\) mediante el crecimiento del tubo polínico (p. 184).
receptáculo, receptacle ( \(n\) ), parte del tallo de una flor a menudo ensanchada, y que alberga los órganos de la flor.
cigomorfa, zygomorphic (adj.), dícese de una flor, tal como la cabeza de dragón, que tiene simetría (p. 62) bilateral.
actinomorfa, actinomorphic (adj.), dícese de una flor, tal como el ranúnculo, que posee una simetría (p. 60) radial.

\section*{Inflorescencia}

unisexual, unisexual (adj.), dícese de las flores que tienen los estambres ( p .181 ) y los carpelos ( p .179 ) en flores distintas. Las flores unisexuales pueden ser monoicas (p. 175) o dioicas (p. 175)
nectario, nectary ( \(n\) ), engrosamiento glandular (p.87) que aparece en el receptáculo (p. 181) o en otras partes de algunas flores y que produce néctar \((\downarrow)\).
néctar, nectar ( \(n\) ), solución ( \(p .118\) ) azucarada dulce producida por los nectarios ( \(\uparrow\) ). Muchos insectos (p. 69) visitan las flores que producen néctar para alimentarse, y entonces polinizan ( \(\downarrow\) ) la flor.
inflorescencia, inflorescence ( \(n\) ), grupo de flores en un mismo tallo.

\section*{tipos de inflorescencias}

espiga

espádice con numerosas flores
masculinas \(y\) masculinas y espiga, spikelet \((n)\), inflorescencia ( \(\uparrow\) ) de una gramípequeñas
espata, spathe ( \(n\) ), estructura parecida a una hoja, o bráctea, que rodea al espádice \((\downarrow)\) de ciertas flores monocotiledóneas (p.58).
espádice, spadix ( \(n\) ), inflorescencia ( \(\uparrow\) ) de ciertas flores monocotiledóneas (p.58), que alberga flores unisexuales \((\uparrow)\) o hermafroditas ( \(p .175\) ).
fórmula floral, floral formula, manera abreviada de describir la estructura de una flor. Se da mediante la combinación de letras mayúsculas y números del siguiente modo: \(K=\) caliz ( \(p .179\) ), \(C=\) corola (p. 179), \(A=\) androceo (p. 181) y \(G=\) gineceo (p. 179). Así, una flor con la fórmula floral K6 C6 G1 A5 tendría: seis sépalos, seis pétalos, un carpelo y cinco estambres
polinización, pollination ( \(n\) ), proceso en el cual el polen ( \(p .181\) ) es transportado desde la antera ( \(p .181\) ) al estigma (p. 181). polinizar (v).
autopolinización, self-pollination ( \(n\) ), polinización ( \(\uparrow\) ) dentro de la misma flor o flores de la misma planta.
polinización cruzada, cross-pollination ( \(n\) ), polinización ( \(\uparrow\) ) entre flores de plantas diferentes.
polinización por el viento, wind pollination, polinización ( \(\uparrow\) ) en la que el polen (p. 181) es transportado de una flor a otra por el viento.
anemofilia, anemophily \(=\) polinización realizada por el viento ( \(\uparrow\) )
polinización por insectos, insect pollination, polinización (p. 183) en la que el polen (p. 181) es transportado de una flor a otra sobre el cuerpo de los insectos ( \(p .69\) ) que han sido atraídos a las flores por el colorido de sus petalos (p. 179), el aroma y la posibilidad del néctar (p. 182)
entomofilia, entomophily \(=\) polinización realizada por insectos ( \(\uparrow\) ).
tubo polínico, pollen tube, expansión tubular que se forma cuando el grano de polen (p.181) germina (p. 168) y que es el medio a través del cual los gametos (p. 175) masculinos son transportados hasta el huevo.
doble fertilización, double fertilization, en las plantas con flor, unión de un núcleo generativo ( \(p .181\) ) con un huevo ( \(p .178\) ) para formar un cigoto ( \(p .166\) ) y del otro con los dos núcleos polares ( \(p .180\) ) para formar el núcleo ( \(p .13\) ) primario del endospermo (p. 168), que es triploide (p. 207). La subsiguiente división del núcleo primario del endospermo produce el endospermo
semilla, seed ( \(n\) ), estructura que se desarrolla después de la fertilización (p.175) del óvulo ( \(p\). 180) y que está formada por la testa (p. 168) que rodea al embrión (p. 166). En condiciones adecuadas, cada semilla puede germinar (p. 168) y formar una planta totalmente independiente. Las semillas de las plantas con flor pueden encontrarse dentro de un fruto.
fruto, fruit ( \(n\) ), pared madura del ovario ( \(p .180\) ) de una flor que contiene las semillas. Dependiendo del método con el que se dispersan las semillas de la planta, el fruto puede ser carnoso (dispersión por animales) o seco (dispersión por el viento o por el agua).
pericarpo, pericarp ( \(n\) ), pared exterior del ovario (p. 180) que se convierte en el fruto.
endocarpo, endocarn ( \(n\) ), capa interna del pericarpo \((\uparrow)\) que se transforma en la cubierta dura de las semillas de una drupa ( \(\downarrow\) ), como, p. ej., en la cereza.
mesocarpo, mesocarp ( \(n\) ), capa intermedia del pericarpo ( \(\uparrow\) ) que forma la parte carnosa de una drupa \((\downarrow)\), tal como una cereza o la cáscara dura de una nuez, como la almendrả
exocarpo, exocarpo ( \(n\) ), "piel" externa fuerte de un fruto.
epicarpo, epicarp \((n)=\operatorname{exocarpo~(~} \uparrow\) ).
capa de aleurona, aleurone layer, capa exterior, rica en proteínas, del endospermo ( p .168 ) de las semillas de las gramíneas
fertilización en angiospermas


1 el grano de polen se posa sobre el estigma, el tubo polinico crece a través de los tejidos del estilo llevando los gametos masculinos


2 el tubo polínico atraviesa la pared del ovario y penetra por el micropilo de un óvulo

rutos \(y\) estructura del fruto
baya, p. ej.: tomate

drupa, p. ej.: albaricoque

legumbre, p. ej.: guisante

escutelo, scutellum (n), parte del embrión (p. 166) de la semilla de una graminea, que está situada cerca del endospermo (p. 168)
coleóptilo, coleoptile ( \(n\) ), lámina protectora de punta afilada y dura que protege la plúmula (p. 168) en una plántula de gramínea en germinación (p. 168).
dehiscencia, dehiscence ( \(n\) ), proceso en el que la pared del fruto maduro se abre, a veces violentamente, para liberar las semillas.
baya, berry (n), fruto, como, p. ej., la zarzamora, que a diferencia de la drupa ( \(\downarrow\) ) no tiene endocarpo ( \(\uparrow\) ) leñoso, de modo que las semillas están rodeadas de mesocarpo ( \(\uparrow\) ) carnoso y endocarpo.
drupa, drupe ( \(n\) ), fruto, como una ciruela, formado por un único carpelo ( p .179 ) que tiene un endocarpo \((\uparrow)\) leñoso que rodea a la semilla.
folículo \({ }^{p}\), folicle ( \(n\) ), fruto seco, tal como en la espuela de caballero, formado por un único carpelo (p. 179) y que durante la dehiscencia ( \(\uparrow\) ) se abre a lo largo de una línea para soltar las semillas.
legumbre, legume ( \(n\) ), fruto seco, tal como en el guisante, formado por un único carpelo (p.179) y que durante la dehiscencia ( \(\uparrow\) ) se abre a lo largo de dos líneas para soltar las semillas
silicua, siliqua ( \(n\) ), fruto seco alargado o tipo especial de cápsula ( p .53 ), tal como el que se encuentra en la familia de las coles, formado por dos carpelos (p. 179) fusionados, pero separados por una pared o septo falso. Durante la dehiscencia ( \(\uparrow\) ), la silicua se escinde y se separan las paredes del carpelo, dejando las semillas fijas al septo.
silicula, silicula ( \(n\) ), tipo de silicua ( \(\uparrow\) ) que se encuentra en plantas del tipo del zurrón de pastor, que es corta y ancha.
aquenio, achene ( \(n\) ), fruto seco, tal como el del ranúnculo, formado por un único carpelo ( \(p .179\) ), que sólo contiene una semilla, tiene un pericarpo ( \(\uparrow\) ) correoso y no tiene un metodo particular de dehiscencia ( \(\uparrow\) )
cipsela, cypsela ( \(n\) ), truto seco similar ai dandelión, que está formado de dos carpelos ( \(p .179\) ), de un ovario inferior que retiene un cáliz plumado (p. 179) para facilitar la dispersión por el viento.
cariópside, caryopsis ( \(n\) ), fruto, tal como el de las gra míneas, similar a un aquenio (p. 185), excepto e que el pericarpo ( \(p .184\) ) va unido a la testa ( \(p .168\) )
nuez, nut ( \(n\) ), fruto seco, tal como el del avellano, similar a un aquenio ( p .185 ), excepto en que el pericarpo (p. 184) es leñoso.
sámara, samara ( \(n\) ), fruto seco, tal como el del olmo, similar a un aquenio (p. 185), excepto en que el pericarpo (p. 184) lleva alas que ayudan a su dispersión \((\downarrow)\) por el viento
falso fruto, false fruit, fruto que incluye otras partes de la flor, tales como la inflorescencia (p. 182) o el ovario (p. 180).
pomo, pome ( \(n\) ), falso fruto ( \(\uparrow\) ) carnoso, tal como el del manzano. La mayor parte de la pulpa es el receptáculo hinchado.
dispersión de los frutos, fruit dispersal, conjunto de métodos mediante los que una flor dispersa sus se millas y que puede incluir tanto fruto como las semillas solas.
dispersión mecánica, mechanical dispersal, dispersión de los frutos ( \(\uparrow\) ) en la que el propio fruto es responsable de distribuir las semillas, abriéndose de modo explosivo cuando están maduras y esparciéndolas alrededor.
dispersión por el viento, wind dispersal, dispersión de los frutos ( \(\uparrow\) ) en la que la semilla es transportada por el viento, debido a su pequeñez y ligereza o a que dispone de estructuras parecidas a alas que le proporcionan un apoyo adicional. En algunos casos, como, p. ej., la amapola, la cápsula (p. 53) se balan cea como un incensario para distribuir las semillas.
dispersión por los animales, animal dispersal, disper sión de los frutos ( \(\uparrow\) ) en la que la semilla es trans portada por animales, incluidos los seres humanos a semilla o el fruto tienen ganchos o espinas para engancharse a la piel de los animales, o sus frutos pueden ser comestibles, aunque las semillas sean indigeribles, por lo que los animales consumen los frutos y las semillas pasan por su tubo digestivo sin resultar dañadas. De hecho, algunas semillas sólo pueden germinar (p. 168) cuando han pasado a través del sistema digestivo (p.98) de ciertos animales
dispersión por el agua, water dispersal, dispersión de los frutos ( \(\uparrow\) ) en la que el fruto o la semilla están especialmente adaptados a ser transportado por las aguas corrientes.

nuez, p. ej.: avellana

sámara, p. ej.: sicomoro

pomo, p. ej.: manzana

gónada, gonad (n). órgano masculino o femenino de reproducción (p. 173) en los animales sexuados que producen gametos (p. 175). En algunos casos, las gónadas también producen hormonas ( \(p .130\) )

testículo, testis (n), órgano reproductor (p.173) mas culino que produce espermatozoos (p. 188) median te espermatogénesis ( \(\downarrow\) ). En los vertebrados (p. 74) existen dos testículos que suelen encontrarse dentro de piel, el escroto ( \(p .188\) ), por fuera de la cavidad general del cuerpo y detrás del pene (p. 189). En los vertebrados, los testículos también producen andrógenos (p. 195)
conducto seminifero, seminiferous tubule, cada uno de los varios cientos de delgados tubos enrollados que constituyen los testículos ( \(\uparrow\) ) y en los que tienen lugar todas las fases de la espermatogénesis \((\downarrow)\)
célula de Sertoli, Sertoli cell, cada una de las grandes células especializadas formadas por epitelio (p. 87) germinal y que se encuentran en los testículos ( \(\uparrow\) ) se cree que constituyen el alimento para las espermátides (p. 188) a las que van unidas.
espermatogénesis, spermatogenesis (n), proceso me diante el cual los espermatozoos (p. 188) son producidos en los testículos ( \(\uparrow\) ). Una célula germina (p. 36) se divide varias veces durante una fase de multiplicación para producir espermatogonios (p. 188), cada uno de los cuales se convierte en un espermatocito (p. 188) primario. A su vez, los esper matocitos sufren dos fases de división meiótica (p.38) para producir espermátides ( p .188 ) que se diferencian después en los espermatozoos
espermatogonio, spermatogonium ( \(n\) ), célula que en gran número están presentes en los testículos (p. 187) y que se transforma en un espermatocito \((\downarrow)\) primario durante la espermatogénesis (p. 187).
espermatocito, spermatocyte ( \(n\) ), cada una de las numerosas células reproductoras que se encuentran en los conductos seminíferos ( \(p\). 187) y que son producidas en el crecimiento del espermatogonio ( \(\uparrow\) ).
espermátide, spermatid ( \(n\) ), cada una de las numerosas células reproductoras (p. 173) que se encuentran en los conductos seminiferos (p.187) durante la espermatogénesis (p. 187). Son producidas como resultado de dos fases de meiosis ( \(p .38\) ) de un espermatocito ( \(\uparrow\) ). Cada espermátide, alimentado por las células de Sertoli (p. 187) se diferencia y madura para convertirse en un espermatozoo \((\downarrow)\).
espermatozoo, spermatozoon ( \(n\) ), célula reproductora (p. 173) o gameto (p. 175) masculino maduro, muy móvil, diferenciado y pequeño. Los espermatozoos son producidos de manera continua y en gran cantidad en los conductos seminíferos (p. 187). La locomoción tiene lugar mediante movimientos de un flagelo (p. 12).
conducto eferente, vas efferens, pequeño canal, a través del cual los espermatozoos ( \(\uparrow\) ) son transportados desde los conductos seminíferos (p.187) hasta el epidídimo ( \(\downarrow\) )
epidídimo, epididymis ( \(n\) ), túbulo muscular (p. 143) enrollado, situado entre los conductos eferente \((\uparrow)\) y deferente \((\downarrow)\), y que funciona como vaso de almacenamiento temporal de los espermatozoos ( \(\uparrow\) ) hasta que son liberados durante la cópula
conducto deferente, vas deferens, cada uno del par de túbulos musculares ( \(p .143\) ) con glándulas ( \(p .87\) ) mucosas ( \(p .99\) ), que conducen desde el epidídimo \((\uparrow)\), y a través de los cuales los espermatozoos ( \(\uparrow\) ) son descargados a la uretra \((\downarrow)\) durante la cópula.
uretra, urethra ( \(n\) ), conducto que conduce desde la vejiga (p. 135) al exterior y a través de la cual es excretada (p. 134) la oriṇa (p. 135). En los animales machos va conectada también a los conductos deferentes ( \(\uparrow\) ).
escroto, scrotal sac, saco externo de piel que está dividido en dos partes, cada una de las cuales lleva un testículo (p. 187). Así, los testículos son mantenidos a una temperatura inferior a la del resto del cuerpo, con lo que se garantizan mejores condiciones para el desarrollo de los espermatozoos ( \(\uparrow\) )

\section*{espermatozoide}
p. ej.: esperma humano
acrosoma (contiene agente que disuelve la membrana

glándula prostática, prostate gland, glándula (p. 87 que rodea a la uretra ( \(\uparrow\) ) y que bajo el control de andrógenos ( \(p .195\) ) secreta ( \(p .106\) ) sustancias alcalinas, que reducen la acidez de la orina (p. 135) y facilitan la movilidad de los espermatozoos ( \(\uparrow\) )
vesícula seminal, seminal vesicle, uno de los dos órganos conectados al conducto deferente ( \(\uparrow\) ) en la mayoría de los mamíferos ( \(p\). 80) machos. Está bajo control hormonal (p. 130) y secreta ( \(p\). 106) un fluido que constituye la masa principal del semen (p. 191), mejorando la movilidad de los espermatozoos ( \(\uparrow\) )
glándula de Cowper, Cowper's gland, una de las dos glándulas (p.87) conectadas al conducto deferente \((\uparrow)\), que secreta ( \(p .106\) ) un fluido para el semen (p. 191)
pene, penis \((n)\), órgano a través del cual la uretra ( \(\uparrow\) ) se abre al exterior y que durante la cópula tiene la función de transportar espermatozoos ( \(\uparrow\) ) a los órganos reproductores (p.173) femeninos. Contiene tejido (p.83) esponjoso que durante la cópula se llena de sangre ( p .90 ) para volverse más rígido o erecto.
ovario \({ }^{\text {a }}\), ovary ( \(n\) ), cada uno de los órganos reproduc tores ( \(p\). 173) pares femeninos en los que se producen los huevos (p. 190) durante la oogénesis ( \(\downarrow\) ). En los ovarios se producen también hormonas (p. 130) femeninas.
oogénesis, oogenesis ( \(n\) ), proceso mediante el cua los huevos ( p .190 ) son producidos en los ovarios \((\uparrow\) ). Una célula germinal (p.36) se divide por mitosis (p. 37) para formar numerosos oogonios ( \(\downarrow\) ), cada uno de los cuales crece para dar lugar a un oocito \((\downarrow)\) primario. Mediante dos fases de división meiótica (p.38) -donde por lo general la segunda fase sigue a la fertilización (p. 175) - se produce un huevo junto con cuerpos polares \((\downarrow)\) adicionales.
oogonio, oogonium ( \(n\) ), célula especializada, situada dentro del ovario ( \(\uparrow\) ), que se produce por división mitótica ( \(p\). 37) de la célula germinal (p.37) y que crece para dar lugar a un oocito \((\downarrow)\) primario durante la oogénesis ( \(\uparrow\) )
oocito, oocyte (n), célula reproductora (p. 173) que se encuentra dentro del ovario ( \(\uparrow\) ) durante la oogéne sis \((\uparrow)\). Es el resultado del crecimiento de un oogonio ( \(\uparrow\) )
cuerpo polar, polar body, diminuta célula producida durante la oogénesis después de la segunda división meiótica (p.38) cuando se forma el huevo. (p. 190). El cuerpo polar contiene un núcleo (p. 13) pero carece virtualmente de citoplasma (p. 10)

huevo \({ }^{\text {a }}\), ovum ( \(n\) ), gameto (p. 175) femenino inmóvil y grande producido en el ovario (p. 189) durante la oogénesis (p.189). Si resulta fertilizado (p. 175) por un espermatozoo (p. 188), se desarrolla y da un nuevo individuo. La fertilización puede tener lugar en la fase de oocito (p.189), después de la primera división meiótica (p.38)
folículo de Graaf, Graafian folicle, masa esférica de células, llena de fluido y con una cavidad que se encuentra en el ovario (p. 189), y contiene un oocito (p. 189) que va fijo a su pared. Es la sede del desarrollo del huevo \((\uparrow)\) y surge de uno de los numerosos folículos que hay en el ovario.
cuerpo lúteo, corpus luteum, glándula (p. 87) que se forma temporalmente en el folículo de Graaf ( \(\uparrow\) ) tras la ruptura durante la ovulación (p. 194). Secreta ( p . 106) la hormona ( p .130 ) progesterona ( p .195 ) que, si el huevo ( \(\uparrow\) ) es fertilizado (p.175), sigue siendo liberada para preparar el conducto reproductor (p. 173) femenino para el embarazo (p. 195). Si no se produce la fertilización, el cuerpo lúteo degenera.
oviducto, oviduct ( \(n\) ), tubo muscular (p. 1.43) revestido de cilios ( \(p .12\) ) por el que los huevos ( \(\uparrow\) ) son transportados desde los ovarios (p.189) al exterior.
útero, uterus ( \(n\) ), órgano de paredes gruesas en el que se desarrolla el embrión (p.166). Es musculoso (p. 143) y la cantidad de musculatura lisa aumenta durante el embarazo (p. 195), de modo que es capaz de expulsar al feto en el nacimiento. El tamaño del útero, así como el espesor de sus paredes, que proporcionan un punto de•fijación y de nutrición para el embrión que se está desarrollando, varían cíclicamente y con la actividad o inactividàd sexual bajo la influencia de hormonas reproductoras (p. 173). Se le conoce también por matriz.

\section*{órganos reproductores femeninos} humanos

cuello uterino, cervix ( \(n\) ), anillo muscular ( p .143 ), si tuado entre el útero \((\uparrow)\) y la vagina \((\downarrow)\), que contiene también glándulas (p. 87) mucosas.
vagina, vagina ( \(n\) ), conducto muscular ( \(p\). 143) que conecta el útero ( \(\uparrow\) ) al exterior y que recibe al pene (p. 189) durante la cópula.
cópula, copulation ( \(n\) ), unión sexual de animales machos y hembras durante el apareamiento en la que, en los mamíferos ( \(p .80\) ), el pene ( \(p .189\) ) es recibido en la vagina \((\uparrow)\) y se produce la eyaculación \((\uparrow)\). Se conoce también por coito.
semen, semen ( \(n\) ), fluido que contiene espermatozoos (p.188) producidos por los testículos (p. 187) y otros líquidos producidos por la próstata (p. 189). Durante la cópula \((\uparrow)\) el semen pasa del macho a la hembra.
eyaculación, ejaculation ( \(n\) ), descarga rítmica y violenta de semen ( \(\uparrow\) ) procedente del pene ( p .189 ).
orgasmo, orgasm ( \(n\) ), clímax de la excitación sexual que tiene lugar durante el apareamiento y que implica una compleja serie de reacciones de los órganos reproductores (p. 173), y de otras partes del cuerpo, incluida la piel.
implantación, implantation ( \(n\) ), proceso tras la fertilización (p.175), en el que el cigoto (p. 166) en desarro\(l l o\) se empotra en la pared del útero ( \(\uparrow\) ).
feto, foetus ( \(n\) ), embrión (p. 166), con un cordón umbilical (p. 192), que está lo suficientemente desarrollado como para mostrar las principales características que tendrá el mamífero ( p .80 ) después del nacimiento.
membrana fetal, foetal membrane, cualesquiera de las membranas (p.14) o estructuras que el embrión ( p . 166) desarrolla para nutrición y protección, pero que no forman parte del propio embrión.
amnios, amnion ( \(n\) ), saco lleno de fluido en el que se desarrolla el embrión (p. 166) de los mamíferos (p. 80). El amnios protege al embrión contra cualquier presión ejercida sobre él por los órganos de la madre y le brinda un medio (p.218) líquido en donde desarrollarse (importante para los animales terrestres). La pared del saco consta de dos capas de epitelio (p. 87); a veces se llama amnios solamente a la capa interna. amniótico (adj.).
cavidad amniótica, amniotic cavity, amnios ( \(\uparrow\) ), o cavidad llena de fluido dentro del amnios, que contiene al embrión (p.166) en desarrollo.
alantoides, allantois (n), extensión en forma de saco del intestino ( p .98 ) que está presente en los embriones (p. 166) de los reptiles (p. 78), de las aves y de los mamíferos ( p 80 ) y que se desarrolla por fuera del propio embrión El tejido conjuntivo (p.88) que lo del propio embrion. El tejido conjuntivo ( \(p\). 88) que lo recubre va provisto de gran numero de vasos (p. 127) sanguin) y funciona para el intercambio de gases ( p .127 ) del embrión, así como para almacenar los productos de excreción (p. 134).
corion, chorion ( \(n\) ), membrana ( \(p .14\) ) externa, el epitelio ( \(p .87\) ) externo, de la pared del amnios ( \(p .191\) ) que rodea al embrión ( p . 166) de los mamíferos (p. 80) y que se une con el alantoides ( \(\uparrow\) ) para convertirse en la placenta \((\downarrow)\).
placenta \({ }^{\text {a }}\), placenta ( \(n\) ), órgano en forma de disco que se desarrolla dentro del útero (p. 190) durante el embarazo (p. 195) y que mantiene un estrecho contacto con el embrión (p.166) y con los teiidos (p. 83) de la madre. La placenta sirve para sujetar y alimentar en toda su gran superficie.
cordón umbilical, umbilical cord, cordón que conecta la placenta ( \(\uparrow\) ) con el ombligo del feto (p. 191), permitiendo el intercambio de materiales a través de dos arterias (p. 127) y una vena (p. 127)
viviparismo, viviparity ( \(n\) ), condición en la que los embriones ( \(p .166\) ) se desarrollan dentro de un útero (p. 190), van fijos a una placenta ( \(\uparrow\) ) y nacen vivos. vivíparo (adj.).
período de gestación, gestation period, tiempo que transcurre entre la fertilización (p. 175) del huevo (p 190) y el nacimiento de la cría en los animales vivíparos \((\uparrow)\). Varía de una especie (p.40) a otra.
parto, parturition ( \(n\) ), proceso de traer al mundo crías vivas en los animales vivíparos ( \(\uparrow\) ) por medio de contracciones ritmicas, estimuladas por la secreción (p. 106) de ciertas hormonas (p. 130).
lactancia, lactation (n), producción de leche en las glándulas (p. 87) mamarias de los mamíferos (p. 80) para alimentar a las crías
pubertad, puberty ( \(n\) ), madurez sexual de un mamífero (p. 80).
menopausia, menopause ( \(n\) ), período en las hembras durante el cual el ciclo menstrual (p. 194) se vuelve irregular, según va aumentando la edad del individuo, hasta cesar del todo

\section*{membranas embrionarias}
de un mamífero
embrión corion
amnios \(\dagger\) tracto digestivo

un huevo de reptil
líquido
corion

saco vitelino alantoides embrión
ciclo sexual, sexual cycle secuencia de sucesos que tienen lugar en las hembras de los animales que se reproducen sexualmente (p.173) y que, en los seres humanos, se produce a intervalos de un mes, alternándose la menstruación (p.194) con la ovulación (p. 194).
ciclo del estro, oestrus cycle, ciclo sexual ( \(\uparrow\) ) rítmico que tiene lugar en las hembras maduras de la mayoría de los mamíferos ( \(p .80\) ), siempre que la hembra no quede preñada (p. 195). Existen cuatro sucesos principales en el ciclo del estro, el más importante de los cuales es el propio estro (p. 194). En la fase folicular se produce el crecimiento de los folículos de Graaf ( p .190 ), un engrosamiento del revestimiento del útero (p. 190) y un aumento en la producción de estrógeno (p. 194). A continuación viene el estro. Se produce después la fase lútea, durante la cual se forma un cuerpo lúteo (p. 190) a partir del folículo de Graaf, que secreta (p. 106) progesterona (p. 195) con una reducción en la secreción de estrógeno. Si se producen fertilización (p.175) y embarazo, se in terrumpe el ciclo y no se pasa a la cuarta fase. Si no hay fertilización, el cuerpo lúteo desaparece, desciende el nivel de hormonas ( p . 130) y comienza a crecer un nuevo folículo de Graaf.
relación entre las hormonas secretadas por la pituitaria, el ciclo del estro y el embarazo en seres humanos
hormona
folículoestimulante hormon
\(\begin{array}{ll}\text { folículoestimulante hormona } \\ \text { (FSH) } & \text { luteinizante (LH) FSH } \\ \text { LH }\end{array}\)

hormonas secretadas por la pituitaria
desarrollo del folículo de Graaf y el cuerpo amarillo en el ovario
ciclo menstrual, menstrual cycle, versión modificada del ciclo del estro (p. 193), que se produce en seres humanos y algunos primates, en la que no se manifiesta el estro \((\downarrow)\), por lo que la hembra atrae permanentemente a los machos y está receptiva en todo momento. Existe una descarga regular de sangre (p. 90) y del revestimiento del útero (p. 190) (menstruación), que se produce después de la ovulación \((\downarrow)\) cuando no hay fertilización (p. 175)
ovulación, ovulation (n), desprendimiento desde el folículo de Graaf (p. 190) de un huevo (p. 190) inmaduro u oocito (p. 189). Tiene lugar bajo la influencia de una hormona ( \(p .130\) ) liberada por la pituitaria (p. 157) a intervalos regulares (aproximadamente cada veintiocho dias en los seres humanos) y en presencia de estrógeno \((\downarrow\) ). ovular (v).
estro, oestrus ( \(n\) ), período corto durante el ciclo sexual ( \(p\). 193) de los animales en el que la hembra ovula \((\uparrow)\) y resulta asimismo atractiva sexualmente para los machos, de modo que se produce la cópula (p. 191).
hormona foliculoestimulante, follicle-stimulating hormone FSH. Hormona (p. 130) producida por la glándula pituitaria (p.157), tras finalizar el ciclo del estro (p. 193) o la gestación \((\downarrow)\), que estimula el crecimiento de los folículos de Graaf (p. 190) y de los huevos ( \(p .190\) ) en las hembras y la espermatogénesis ( \(p .187\) ) en los machos.
estrógeno, oestrogen ( \(n\) ), hormona ( \(p .130\) ) sexual femenina, producida en el folículo de Graaf (p. 190), que estimula la producción de un medio (p. 218) adecuado para la fertilización (p. 175) y el crecimiento del embrión (p. 166), mediante la reparación de las paredes del útero (p. 190), después de la menstruación ( \(\uparrow\) ) Durante la primera parte del ciclo del estro (p. 191) comienza a producirse hasta que estimula la producción de hormona luteinizante ( \(\downarrow\) ) en la pituitaria ( \(p .157\) ). Está implicada también en el desarrollo de otros órganos femeninos asociados con el ciclo sexual.
hormona luteinizante, luteinizing hormone LH. Hormona ( \(p .130\) ) secretada ( \(p .106\) ) por la glándula pituitaria (p. 157) bajo la influencia del estrógeno ( \(\uparrow\) ). Estimula la ovulación ( \(\uparrow\) ) y el desarrollo del folículo de Graaf (p. 190) en un cuerpo lúteo (p. 190) que produce progesterona (p. 195).
interacción de las hormonas interaccion de las hormonas
en el ciclo sexual femenino
reparación de




progesterona, progesterone ( \(n\) ), hormona (p 130) secretada (p. 106) por el cuerpo lúteo (p. 190) que impide el desarrollo de más folículos de Graaf (p. 190) impidiendo la secreción de hormona foliculoestimu lante \((\uparrow)\). Prepara también el útero ( \(p .190\) ) para la implantación (p. 191) de los huevos (p. 190) y contribuye al desarrollo de la placenta ( \(p\). 192) y de las glándulas mamarias (p. 87)
gestación, pregnancy ( \(n\) ), condición que se produce en una hembra después de la fertilización (p. 175) y de la implantación (p. 191). El ciclo del estro (p. 193) se interrumpe en la fase lútea. Se altera la producción de hormonas ( \(p .130\) ) de tal manera que son producidas por la placenta (p. 192) y por la glándula pituitaria ( \(p\). 157) para garantizar el parto ( \(p\). 192) y la lactancia (p. 192) apropiados. Se conoce también por preñez y en el caso de los seres humanos, asimismo, por embarazo.
oxitocina, oxytocin (n), hormona (p. 130) producida por la glándula pituitaria (p. 157) al final de la gesta ción \((\uparrow)\), que estimula la contracción de los músculos ( p .143 ) uterinos ( p .190 ) durante el parto y prepara las glándulas (p. 87) mamarias para la producción de leche durante la lactancia (p. 192).
prolactina, prolactin ( \(n\) ), hormona (p. 130) producida por la glándula pituitaria (p. 157), que estimula y controla la producción de leche durante la lactancia (p. 192).
estación reproductora, breeding season, en los animales en los que el ciclo del estro (p. 193) no se produce de manera continua y durante todo el año el tiempo durante el cual tiene lugar y que suele estar sujeto a la influencia del clima y de otros factores ambientales (p. 218)
andrógenos, androgens ( \(n . p l\).), hormonas (p. 130) sexuales masculinas, tales como la testosterona ( \(\downarrow\) ) producidas esencialmente por los testículos (p. 187) y que estimulan y controlan las espermatogénesis (p. 187), así como otras características masculinas tales como el crecimiento del pelo facial.
testosterona, testosterone ( \(n\) ), andrógeno ( \(\uparrow\) ) producido por los vertebrados (p.74) machos.
hormona estimulante de las células intersticiales, interstitial cell-stimulating hormone, hormona luteinizante ( \(\uparrow\) ) que estimula la secreción ( \(p\). 106) de andrógenos ( \(\uparrow\) ) por parte de los testículos (p. 187) en los machos.
genética, genetics (n), estudio o ciencia de la herencia que trata las variaciones entre los organismos y cómo éstas resultan afectadas por la interacción del medio ( \(p .218\) ) con los genes ( \(\downarrow\) ).
heredar, inherit ( \(v\) ), recibir material genético \((\downarrow)\) de los propios parentales o ancestros. herencia ( \(n\) ).
genotipo, genotype ( \(n\) ), constitución genética \((\downarrow)\) real de un organismo que, p. ej., puede definir los límites de su crecimiento que sufren después la influencia del medio (p.218)
fenotipo, phenotype ( \(n\) ), aspecto y características totales de un organismo. Los organismos pueden tener el mismo genotipo ( \(\uparrow\) ), aunque los fenotipos pueden ser diferentes debido a los efectos del medio (p. 218).
genoma, genome ( \(n\) ), material genético \((\downarrow)\).
gen, gene ( \(n\) ), unidad más pequeña conocida de herencia que controla una característica particular de un organismo, tal como el color de los ojos. Se puede considerar a un gen como un conjunto complejo de compuestos químicos situados sobre un cromosoma (p.13). El gen puede replicarse para producir copias exactas de sí mismo o mutar (p.206) para dar lugar a nuevas formas. genético (adj.).
genética mendeliana, Mendelian genetics, sistema de genética ( \(\uparrow\) ) desarrollado por el monje austríaco Gregor Mendel (1822-84), en el que estudió la herencia mediante una serie de experimentos de cruces controlados con el guisante común. Estudió características simples controladas por un único gen \((\uparrow)\) y, usando estadística, analizó los resultados de los cruces. De esta manera demostró que los fenotipos ( \(\uparrow\) ) no resultan de una mezcla de genotipos ( \(\uparrow\) ), sino que siguen unas proporciones diferentes.
primera generación filial \(\left(F_{1}\right)\), first filial \(\left(F_{1}\right)\) generation, primera generación de descendientes resultante de un cruce de líneas puras \((\downarrow)\) o parentales \((\downarrow)\) de una misma especie (p.40).
segunda generación filial \(\left(F_{2}\right)\), second filial \(\left(F_{2}\right)\) generation, segunda generación de descendientes resultante de un cruce entre individuos de la primera generación filial ( \(\uparrow\) )
línea pura, pure line, sucesión de generaciones que resulta de la cría de un organismo homocigótico ( \(\downarrow\) ), de modo que se crían y producen descendencia genéticamente ( \(\uparrow\) ) idéntica.


parental, parental ( \(n\) ), sucesión de generaciones que conduce a generaciones filiales \((\uparrow)\).
herencia monohibrida, monohybrid inheritance, resultado del cruce de líneas puras ( \(\uparrow\) ) con un par de características diferentes para dar descendencia con una de esas características, tal como el cruzamiento mendeliano entre plantas altas y enanas de guisante común para dar un monohibrido alto.
dominante, dominant (adj.), dicese (1) un gen ( \(\uparrow\) ) que da lugar a una característica que siempre aparece, tanto en condición homocigótica \((\downarrow)\) como heterocigótica (p. 198); p. ej.: en el cruce mendeliano de variedades altas y enanas de guisante, toda la generación \(F_{1}(\uparrow)\) eran guisantes altos y en la generación \(F_{2}\) la proporción entre individuos altos y enanos era de \(3: 1\). Así, el gen dominante era la característica alto; (2) Dícese de una especie (p.40) que, en una comunidad (p.217) particular de plantas, es la más común y característica de esa comunidad, tanto en su número como su desarrollo. La especie dominante tiene un efecto directo sobre las otras plantas de la comunidad.

algunas posibles combinaciones algunas posibles combinaciones
de 3 alelos sobre un par de de 3 alelos sobre un par de cromosomas
recesivo, recessive (adj.), dícese de un gen ( \(\uparrow\) ) que da lugar a una característica que sólo puede aparecer en una condición homocigótica \((\downarrow)\) y que en condición heterocigótica ( p . 197) es suprimida por el gen dominante ( \(\uparrow\) ); p. ej.: en el cruce mendeliano de variedades altas y enanas de guisante, el gen recesivo determina la condición enana.
alelo, allele ( \(n\) ), cada una de las formas alternativas de un gen \((\uparrow) ; p\). ej.: el par de genes designados por BB dan lugar a ojos pardos y el par de genes designados bb produce ojos azules; se dice entonces que \(B\) y \(b\) son alelos del mismo gen y que \(B\) es dominante \((\uparrow)\), mientras que \(b\) es recesivo \((\uparrow)\)
homocigótico, homozygous (adj.), dícese de un organismo que tiene los dos alelos \((\uparrow)\) iguales para una característica particular, tal como el color de los ojos. Si se cruza un homocigoto con otro similar, producen la característica pura. Si un organismo es homocigótico para todas las características y se cruza con otro organismo genéticamente ( \(\uparrow\) ) idéntico, la descendencia será idéntica a los parentales. Esto sucede gradualmente con la cría constante, de modo que aunque los organismos pueden estar bien adaptados a su medio ( p . 218) particular, si éste cambia, tardarán en responder.
cruzamiento prueba, test cross, ensayo para demostrar si un organismo que muestra una característica asociada con un gen ( \(p .196\) ) dominante ( \(p .197\) ) es heterocigótico ( \(\uparrow\) ) u homocigótico (p.197) para esa característica, cruzándolo con un doble recesivo \((\downarrow)\) para esa característica. Si el organismo ensayado es homocigótico, toda su descendencia mostrará la característica del gen dominante, mientras que si es heterocigótico, la mitad mostrará el carácter dominante y la otra mitad el recesivo (p. 197).
heterocigótico, heterozygous (adj.), dícese de un organismo que tiene dos alelos (p. 197) diferentes para una característica particular, tal como el color de los ojos, de modo que el alelo dominante (p. 197) se expresa en el fenotipo (p. 196). Si un heterocigoto se cruza con otro heterocigoto genéticamente (p. 196) idéntico, algunas características recesivas (p. 197) aparecerán en algunos de los descendientes. Los organismos heterocigóticos son más adaptables que los homocigóticos (p. 197) a los cambios en las condiciones.
ley de segregación, law of segregation, primera ley de Mendel. Es una de las dos leyes formuladas por Gregor Mendel para explicar el modo en el que se produce la herencia. Afirma que con dos alelos (p. 197) sobre un gen (p. 196) para un par de caracteres, sóto uno de ellos puede ser llevado en un gameto (p. 175).

 homocigóticos para el gen A y guisantes rugosos
ss homocigótico para el
gen recesivo s
s. guisantes rugosos
ss homocigótico para el
gen recesivo s


ley de la distribución independiente, law of independent assortment, segunda ley de Mendel. Una de las dos leyes de la herencia formuladas por Gregor Mendel, y que afirma que cada miembro de una pareja de alelos ( \(p\). 197) tiene la misma probabilidad de combinarse con un miembro de otra pareja de alelos que con cualquier otro miembro, porque están asociados al azar (y de modo independiente).

\section*{2. \({ }^{\text {a }}\) Iey de Mendel}

generación \(F_{1}\)


progenie, progeny (n. pl.), descendencia que resulta de la reproducción (p.173)
ligamiento, linkage ( \(n\) ), situación en la que se dice que genes (p. 196) situados sobre el mismo cromosoma (p.13) están ligados porque son incapaces de distribuirse según la ley de la distribución independiente \((\uparrow)\) y que se transmiten juntos en la herencia.
grupo de ligamiento, linkage group, grupo de genes (p. 196) ligados ( \(\uparrow\) ) situados sobre el mismo cromosoma (p.13) que se heredan juntos.

herencia del
daltonismo
\(\mathbf{X}=\) cromosoma sexual normal
\(\mathbf{X}^{\mathbf{c}}=\) cromosoma sexuai con gen para el daltonismo

romosomas sexuales, sex chromosomes, cromoso mas (p.13) que controlan si un individuo de la mayoría de los animales será macho o hembra. Existe un par homólogo (p.39) de cromosomas en el núcleo (p.13) de un sexo, generalmente la hembra, y un cromosoma único o impar en el núcleo del otro, po lo general el macho.
cromosomas \(\mathbf{X}, X\) chromosomes, cromosomas sexua les \((\uparrow)\) que se presentan como un par \(X X\) en los núcleos (p.13) del sexo homogamético \((\downarrow)\) y por lo general son responsables del sexo femenino en la mayoría de los animales. Todos los gametos (p. 175) del sexo homogamético contendrán un cromoso ma X.
cromosomas Y, Y chromosomes, cromosomas sexua les \((\uparrow)\) que se presentan como páreja impar con un cromosoma \(X(\uparrow)\) o de modo impar en los núcleos (p. 13) del sexo heterogamético ( \(\downarrow\) ) y suelen ser responsables del sexo masculino en la mayoria de los animales. Los gametos (p. 175) del sexo heterogamético son de dos tipos, con o sin cromosoma \(X\) que son iguales en número
heterosomas, hetersomes (n. pl.), cromosomas (p 39) homólogos, tales como los cromosomas sexuales \((\uparrow)\), que por lo general no son de aspecto idéntico
autosomas, autosomes (n. pl.), cromosomas (p. 39) homólogos que no son cromosomas sexuales \((\uparrow)\) y que por lo general son de aspecto idéntico.
sexo homogamético, homogametic sex, sexo, generalmente el femenino, que contiene cromosomas sexuales ( \(\uparrow\) ) que se presentan como pareja par de cromosomas \(X X\) ( \(p .13\) ) en los núcleos de un organismo.
sexo heterogamético, heterogametic sex, sexo, gene ralmente el masculino, que contiene cromosomas sexuales ( \(\uparrow\) ) que se presentan como pareja impar de cromosomas XY (p.13) o impares en los núcleos ( p .13 ) de un organismo
ligado al sexo, sex-linked (adj.), dícese de ciertas ca racterísticas asociadas con genes (p. 196) recesivos (p. 197) que están ligados al sexo del individuo por que van unidos al cromosoma \(X(\uparrow)\)
daltonismo, colour blindmess, característica ligada al sexo ( \(\uparrow\) ) en la que existe incapacidad de distinguir entre pares de colores, por lo general rojo/verde, aunque no resulta afectada la capacidad de distin guir la forma y los tonos.


\section*{sobrecruzamiento}
hemofilia, haemophilia ( \(n\) ), característica o enterme- durante la primera división meiótica dad ligada al sexo (p. 201), conocida sólo en el sexo masculino, en la que la sangre ( \(p\). 90) es incapaz de coagular (p. 129) de manera adecuada después de una herida.
sobrecruzamiento, crossing over, intercambio de material genético \((\downarrow)\) durante la meiosis (p.39) entre los parentales ( \(p\). 197) masculino y femenino, en el que los cromatidios ( \(p .35\) ) de los cromosomas (p.39) homologos se rompen en los quiasmas (p.39) y vuelven a unirse para permitir la recombinación de los genes ligados (p. 201). El sobrecruzamiento conduce a un aumento en la variación (p. 213).
recombinantes, recombinants ( \(n\). pl.), gametos (p. 175) que resultan del sobrecruzamiento ( \(\uparrow\) ), de modo que el intercambio de material genético \((\downarrow)\) entre los parentales (p.197) da lugar a algunas ca racterísticas que no están presentes en ninguno de los parentales. Todo ello conduce a un aumento de la variabilidad en la descendencia y al mayor sambio de adaptación a condiciones cambiantes. recombinar (v).
frecuencia de sobrecruzamiento, crossover frequen\(c y\), número de recombinantes ( \(\uparrow\) ) que tienen probabilidad de producirse como resultado del sobrecru binie de \(\uparrow\) ) entre dos genes ( 196) en partes di zamiento ( \(\uparrow\) ) entre dos genes (p.1.13) en partes di erentes del mismo cromosoma (p. 13). Suele expresarse como un porcentaje del número de recombi nantes comparado con el número total de descen dientes producidos. La frecuencia de sobrecruzamiento es menor cuanto más cerca están los genes sobre los cromosomas.
mapa cromosómico, chromosome map, diagrama del orden y la distancia entre los genes (p.196) sobre un cromosoma (p.13), realizado mediante experimentos y un análisis de la frecuencia de sobrecruzamiento ( \(\uparrow\) ).
locus, gene locus, posición precisa de un gen (p. 196) sobre el cromosoma (p. 13). Los alelos (p. 197) de mismo gen ocupan los mismos loci (pl.) sobre cro mosomas homólogos (p. 39)
alelos múltiples, multiple alleles, serie de tres o más alelos (p. 197) sobre el mismo gen (p. 196) que dan lugar a una característica particular. Sólo dos de estos alelos en varias combinaciones pueden ocupar el mismo locus ( \(\uparrow\) ) sobre un par de cromosomas homólogos (p.39) al mismo tiempo.
alelos letales, lethal alleles, alelos (p. 197) que matarán al individuo si son dominantes (p. 197) en un individuo heterocigótico (p. 198) o si son recesivos (p. 197) en uno homocigótico (p. 197)
dominancia parcial, partial dominance, situación que sucede entre alelos (p. 197) dominantes (p.197) en la que uno puede ser ligeramente más dominante que el otro. Por ejemplo, si el alelo para el rojo es dominante en individuos de la misma flor mientras que el alelo para el blanco es dominante en otros individuos, el cruce de ellos puede producir flores que serán de color rosa rojizo si el alelo para el rojo es más dominante que el alelo para el blanco. Se conoce también por codominancia.
epistasia, epistasis ( \(n\) ), interacción de genes (p. 196) no alélicos ( \(p .197\) ) en la que un gen suprime las características que normalmente expresaría otro gen. Es similar a la recesividad (p. 197) y la dominancia (p. 197) entre alelos (p. 15).
material genético, genetic material, compuestos (p. 15) orgánicos que llevan la información genética (p.196) de una generación a la siguiente y de una célula a otra. Los cromosomas (p.13) están compuestos de proteinas (p.21) y ADN (p. 24) que lleva la información genética.
código genético, genetic code, secuencia de cuatro bases ( \(p .22\) ), adenina (p.22), guanina ( \(p .22\) ), citosina (p. 22) y timina (p. 22), sobre una cadena de ADN (p.24), que representa un código que controla la construcción de proteínas ( p . 216) y enzimas (p.28), las cuales constituyen el citoplasma (p. 10) de un organismo y dirigen su funcionamiento. Tripletes de estas bases codifican para los veinte aminoácidos (p.21) diferentes y grupos de estos tripletes codifican para proteínas enteras. Más de un triplete puede codificar para un aminoácido.

transcripción, transcription ( \(n\) ), proceso en el que el código genético (p.203) es, en primer lugar, copiacodigo genetico (p. 203) es, en primer lugar, copia-
do del ADN (p. 24) sobre una cadena simple de ARN (p.24) en los núcleos de las células.
traducción, translation (n), proceso en el que el ARN mensajero ( p .24 ), procedente de la transcripción \((\uparrow)\), abandona el núcleo ( \(p\). 13) y pasa a los ribosomas ( p .10 ) del citoplasma ( p .10 ) para funcionar como una plantilla con la que los aminoácidos (p.21) son transformados en proteínas (p.21).

mutación, mutation ( \(n\) ), cambio en la estructura del material genético (p. 203) de un organismo, que se heredará si sucede en las celulas productoras de gametos ( \(p\). 175). Puede producirse como resultado de cambios en los genes (p. 196) o de variaciones en la estructura de varios cromosomas (p. 13). La en la ería de las mutaciones son inofensivas, pero a mayoria de las mutaciones son inofensivas, pero algunas permiten al organismo adaptarse a las circunstancias cambiantes, y como fuente de mayor variación (p. 213) constituyen el material propio de la evolución (p. 108). Las mutaciones pueden estimularse mediante ciertas sustancias quimicas o radia ción ionizante.
mutante, mutant ( \(n\) ), resultado de una mutación ( \(\uparrow\) ) que suele ser recesiva (p.197) en la mayoría de las mutaciones corrientes.
agente mutágeno, mutagenic agent, estímulo, tal como ciertas sustancias quimicas o radiación ionizante, que produce con probabilidad una mutación ( \(\uparrow\) ).
mutación cromosómica, chromosome mutation, cambio o mutación ( \(\uparrow\) ) en el número o la disposición de los cromosomas (p. 13).
deleción, deletion ( \(n\) ), mutación cromosómica ( \(\uparrow\) ) que se produce si un segmento de un cromosoma se rompe y se pierde durante la división nuclear (p.35), con la consiguiente pérdida de material genético (p. 203).
inversión, inversion ( \(n\) ), (1) mutación cromosómica (p.13) que se produce si un segmento de cromosoma se rompe durante la división nuclear (p.35) y el cromosoma vuelve a unirse, pero al revés, con la secuencia de genes ( \(p .196\) ) invertida.
translocación \({ }^{2}\), translocation (n), mutación ( \(\uparrow\) ) en un cromosoma (p.13) que sucede si un segmento del cromosoma se rompe durante la división nuclear (p.35) y vuelve a unirse en un lugar diferente o con ptro cromosoma
duplicación, duplication ( \(n\) ), mutación ( \(\uparrow\) ) de un cromosoma (p. 13) en la que un segmento del cromosoma se duplica en el mismo o en otro cromosoma.
mutación génica, gene mutation, mutación ( \(\uparrow\) ) en la que la secuencia de bases ( \(p .22\) ) no es copiada exactamente en la replicación de una cadena de ADN (p.24), dando como resultado un cambio en la formación de las proteínas (p. 21). Una vez producida la mutación se replica en la formación de otras cadenas de ADN.


\section*{inversión}


\section*{translocación}


\section*{duplicación}
sustitución, substitution ( \(n\) ), mutación génica ( \(\uparrow\) ) en la que una base ( \(p .22\) ) de ADN es sustituida por otra base, también de ADN.
inserción, insertion ( \(n\) ), mutación génica ( \(\uparrow\) ) en la que una nueva base ( p .22 ) es insertada en la secuencia existente de bases de la cadena de ADN (p. 24).
anemia falciforme, sickle-cell anaemia, enfermedad hereditaria que muestra dominancia parcial (p. 203). Una célula falciforme contiene un gen (p. 196) mutante ( \(\uparrow\) ) que cristaliza la hemoglobina ( \(p\). 126) en los eritrocitos ( \(p .91\) ) de la sangre humana (p.90) y los deforma, provocando la obstrucción de los vasos sanguineos (p. 127). Suele encontrarse entre los pueblos negroides y se cree que brinda cierta resistencia contra la malaria.
poliploidia, polyploidy ( \(n\) ), condición en la que las células de un organismo contienen al menos tres veces el número haploide (p. 36) de cromosomas (p. 13). poliploide (adj.).
triploide, tripioid (adj.). dícese de una célula poliploide \((\uparrow)\) en la que hay tres veces el número haploide (p.36) normal de cromosomas (p. 13). Es el resultado de la fusión de un gameto haploide y otro diploide ( \(p .36\) ).
tetraploide, tetraploid (adj.), dícese de una célula poliploide ( \(\uparrow\) ) en la que hay cuatro veces el número haploide (p.36) normal de cromosomas (p.13). Sucede como resultado de la fusión de dos células diploides ( \(p .36\) ).
aneuploidia, aneuploidy ( \(n\) ), condición en la que la mutación ( \(\uparrow\) ) de un cromosoma (p.13) da como resultado la ganancia o pérdida de cromosomas de un juego.
euploidia, euploidy ( \(n\) ), condición en la que la mutación ( \(\uparrow\) ) de un cromosoma ( \(p .13\) ) da como resultado la ganancia de un juego completo de cromosomas.
autopoliploide, autopolyploid (adj.), dícese de la condición de poliploidia ( \(\uparrow\) ) que resulta de la euploidia ( \(\uparrow\) ) en la que la célula tiene múltiples juegos de sus cromosomas (p.13).
alopoliploide, allopolyploid (adj.), dicese de la condición de poliploidía ( \(\uparrow\) ) que resulta de euploidía ( \(\uparrow\) ), en la que la célula contiene dos juegos diferentes de cromosomas (p.13) procedentes de la hibridación (p. 216) de dos organismos muy emparentados, en especial de plantas.
evolución, evolution (n), proceso por el cual todos los organismos descienden de ancestros comunes que surgieron de la Tierra. A través de las sucesivas generaciones en el curso de las eras geológicas las neraciones (p.214) se modifican en respuesta las poblaciones (p. 214) se modifican en respuesta a medio (p. 218) por medio de procesos, tales como la selección natural ( \(\downarrow\) ), de tal manera que se forma nuevas especies (p. 40) emparentadas, aunque alejadas, mediante una descendencia común

Darwinismo, Darwinism (n), mecanismo propuesto por el naturalista británico Charles Darwin (1809-82), tras cuidadosa observación de los animales y las plantas de todo el mundo; p. ej.: los pinzones de Darwin para explicar el modo cómo los organismos varían lentamente en el curso de millones de años para da lugar a nuevas formas. Sugirió que en cualquier población (p.214) dada de organismos, existia una considerable variación entre los individuos. Algunos mostrarian características diferentes que les harian estar mejor adaptados a las circunstancias y al medio (p.218) que otros. Así, estos individuos tendrían más posibilidades de sobrevivir hasta la madurez y de reproducirse, por lo que sus descendientes tam bién presentarían estas características. Aquellos in dividuos peor dotados para las condiciones del me dio tendrían menos posibilidades de reproducirs con éxito, por lo que llegaría un momento en que la población tendría cada vez más individuos mejor adaptados al medio y el caracter de la especie (p. 40) cambiaría en su conjunto, dando como resultado una nueva especie. Sin embargo, Darwin fue incapaz de explicar cómo se producían las variaciones. Llamó a este proceso teoría de la selección na tural ( \(\downarrow\) ).
selección natural, natural selection, una de las deduc ciones principales del darwinismo ( \(\uparrow\) ). Si las variaciones ( p .213 ) que suceden entre los individuos dentro de una población (p.214) de animales les dan mejores posibilidades de supervivencia, es más probable que alcancen la madurez sexual y se re produzcan de modo que sus descendientes here darán esas características ventajosas. Eventualmente, la herencia de variaciones en una dirección particular, a través de varias generaciones, conducirá nuevas especies ( \(p .40\) ).
pinzones de Darwin en la islas Galápagos Darwin observo que habia muchas especies de pinzones, y penso que podrían habe evolucionado a partir de una única especie

C. crassirostris

C. psittacula
 pallidus

G. fortis
G. fortis
se alimenta en el suelo


Geospiza scandens se alimenta de cacto


Pinaroloxias
inornata
parecido al mosquitero
supervivencia del más apto, survival of the fittest idea que subyace a la selección natural ( \(\uparrow\) ), que in dica que solo los animales mejor adaptados a sus circunstancias sobrevivirán en la lucha por la exis tencia, mientras que aquéllos que resultan menos aptos perecerán.
neodarwinismo, Neodarwinism ( \(n\) ), moderna versión modificada del darwinismo ( \(\uparrow\) ) que, con ayuda de las teorías (p.235) genéticas (p. 196) basadas en os trabajos de Gregor Mendel (p. 196), intenta expli car los mecanismos de la existencia de variaciones ventajosas que pueden presentarse de modo natural en la población (p.214) de organismos y que, debido a la ausencia de esos conocimientos en su épo ca. Darwin no pudo utilizar
origen de las especies, origin of the species, teoría (p.235) derivada del darwinismo ( \(\uparrow\) ) que Charles Darwin desarrolló en un artículo publicado por el mismo en 1859 y que tituló Sobre el origen de las especies por medio de la selección natural y la con servacion de las razas favorecidas en la lucha por la existencia. La teoría indica que dentro de una pobla cion (p. 214) de una especie (p. 40) existen varios factores, tales como barreras geográficas (ríos océanos, montañas, etc.) o diferencias específicas en el comportamiento ( \(p\). 164) que pueden aisla (p. 214) grupos reproductores dentro de la pobla ción. Esto tiende a mantener la integridad de los ge nes ( \(p\). 196) que llevan las variaciones ( \(p .213\) ) den tro del grupo que son favorables para el medio (p. 218) local. De esta manera, las diferencias gené ticas entre un grupo y otro pueden irse incrementan do, y en el curso de varias generaciones conducen al desarrollo de nuevas especies, cada una adaptada a sus condiciones particulares. A esto se le llama especiación (p.213). Véase también selección natu \(\mathrm{ral}(\uparrow)\).

Lamarckismo, Lamarckism (n), teoría (p. 235) basada en las observaciones del biólogo francés Jean de Lamarck (1744-1829). rijo observó que los órganos particulares de un animal podrían caer en uso o desuso segun se les necesitara o no. Partiendo de esto sugirio que estas caracteristicas adquiridas podrían heredarse. Los modernos estudios genéticos (p. 196) sin embargo, han sido incapaces de descubrir ningún mecanismo por el que los caracteres desarrollados en el curso de la vida de un individuo podrían pasar a su descendencia, por lo que esta teoria ha quedado relegada

deriva continental, continental drift, proceso por el que se cree, a partir de recientes pruebas geológi(hace 26-7 millones de años)
estructuras análogas

análogo, analogous (adj.), dícese de estructuras u órganos que se presentan en diferentes especies (p.40) de organismos y que tienen funciones similares, aunque un origen evolutivo (p. 208) y embrioló gico ( \(p\). 166) distinto, de modo que su estructura es ambien diferente; p. ej.: las alas de las aves y las de os insectos permiten a ambos tipos de animales volar, pero su origen y forma son muy diversas
homólogo, homologous (adj.), dícese de estructuras u órganos que se presentan en diferentes especies (p.40) de organismos, pero que tienen orígenes evolutivos ( \(p .208\) ) y embriológicos ( \(p\). 166) similares aunque sus funciones pueden haberse modificado p. ej.: las extremidades de los vertebrados (p. 74 tetrápodos (p.77) se basan en el esquema de cinco dedos. Esto indica relaciones evolutivas entre diferentes especies.
divergente, divergent (adj.), dícese de la evolución (p. 208) en la que estructuras homólogas ( \(\uparrow\) ) se han adaptado a realizar diferentes funciones; p. ej.: las aletas de los mamíferos (p. 80) marinos, tales como las focas, son homólogas a las extremidades de los vertebrados ( \(p .74\) ) terrestres, pero se usan de manera diferente, ya que las focas se han adaptado mejor a su medio (p.218) marino
convergente, convergent (adj.), dícese de la evolución (p. 208) en la que estructuras análogas ( \(\uparrow\) ) se han adaptado a realizar la misma función; p. ej.: el ojo de un cefalópodo (p. 72) realiza la misma función que e de un vertebrado (p.74), pero tiene un origen y una estructura muy diferentes
vestigial, vestigial (adi.), dicese de una estructura u órgano que originalmente realizaban una función útil, pero que a través de la evolución ( \(p\). 208) han quedado reducidos a un resto de lo que eran y ya no realizan ninguna función; \(p\). ej.: el apéndice (p. 102) en los seres humanos.
primitivo, primitive (adj.), dícese de una estructura o un organismol en una fase temprana de su evolucion (p.208) o que es similar a un organismo en una fase temprana.
filogenético, phylogenetic (adj.), dícese de una clasificación ( p .40 ) que se basa en las relaciones evolutivas (p.208) aparentes entre organismos.
paleontología, paleontology ( \(n\) ), ciencia o estudio de las formas antiguas de vida a través de sus restos fósiles \((\downarrow)\).
fósil, fossil ( \(n\) ), cualquier resto o traza de un organismo que vivió en el pasado y que se ha conservado de alguna manera, tal como en las rocas o en el hielo.

registro fósil, fossil record, registro continuo de los orígenes, el desarrollo y la existencia de vida en la Tierra, expresado a través de los hallazgos de fósiles \((\uparrow)\) conservados en las rocas desde los orígenes del planeta hasta nuestros días.
columna geológica, geological column, escala de tiempo tabular elaborada por los geólogos sobre la base del registro fósil ( \(\uparrow\) ) y otras pruebas, tales como la datación radiométrica, en la que la historia de la Tierra se divide en eras, períodos y épocas.
variación, variation ( \(n\) ), diferencias en la forma y la estructura que suceden de manera natural entre los individuos dentro de la misma especie (p.40) y que pueden ser el resultado de cambios genéticos (p. 196), tales como mutaciones ( \(p .206\) ), o de diferencias en factores, tales como nutrición (p.92) o densidad de población (p.214).
diversidad, diversity ( \(n\) ), estado de las cosas que son diferentes unas de otras.
mecanismos de aislamiento, isolating mechanisms, factores tales como la existencia de barreras geográficas, comportamiento (p. 164) o el momento de la época reproductora ( \(p .196\) ), que tienden a separar los grupos de individuos en comunidades (p.217) reproductoras (p. 173)
acervo genético, gene pool, número total y tipo de genes (p. 196) que existen en cualquier tiempo dado dentro de una población (p.214) que se ha separado por medio de diversos mecanismos de aislamiento \((\uparrow)\). Los genes, dentro de un acervo genético dado, pueden entremezclarse al azar mediante la reproducción dentro del grupo.
especiación, speciation ( \(n\) ), proceso por el que dos o más especies (p.40) evolucionan a partir de una especie original como grupos reproductores que se separan mediante mecanismos de aislamiento ( \(\uparrow\) ), y que desarrollan una serie de caracteres distintivos como resultado de la selección nctural (p. 208), hasta el punto que las poblaciones ( p .214 ) aisladas dejan de poder cruzarse entre sí.

\section*{especiación}
 poblaciones
poblaciones aisladas reproductivamente de una especie
mortalidad diferencial, differential mortality, base de la selección natural (p. 208) durante períodos de población ( \(p\). 214) en aumento, cuando los individuos de la comunidad superpoblada mejor adaptados a su ambiente (p.218) sobreviven, mientras que los peor adaptados mueren, de manera que la evolución ( p .208 ) se produce por selección natural.
melanismo, melanism ( \(n\) ), condición en la que estructuras, tales como el pelo, la piel y los ojos, quedan coloreados por el pigmento (p. 126) pardo oscuro melanina. La piel con melanina protege al individuo contra los efectos perjudiciales de la exposición prolongada a la luz del sol. Por consiguiente, los seres humanos que han evolucionado (p. 208) en áreas de gran intensidad de iluminación solar han desarrollado, por selección natural (p. 208), color de piel más oscura.
frecuencia génica, gene frequency, presencia de un gen (p. 196) particular en una población ( \(\downarrow\) ) dada en relación con todos sus alelos (p. 197).
principio de Hardy-Weinberg, Hardy-Weinberg principle, ley formulada en 1908 mediante la que es posi ble comprender mejor los efectos de la selección natural (p. 208). Afirma que en una población \((\downarrow)\) dada, en la que la formación de parejas se produce al azar, la proporción de genes (p. 196) dominantes ( \(p .197\) ) a recesivos ( \(p .197\) ) en la población, permanece inalterada de una generación a otra. Hasta que no se formuló este principio, sè creía que el número de los genes recesivos disminuiría, mientras que el de los dominantes aumentaría.
flujo genético, gene flow, proceso mediante el cual los genes (p. 196) se desplazan dentro de una población \((\downarrow)\) mediante apareamiento e intercambio de genes.
deriva genética, genetic drift, proceso mediante el cual la estructura genética ( p . 196) de una población \((\downarrow)\) pequeña de organismos cambia por medio de modificaciones más que por selección natural (p. 208). En una población pequeña no puede mantenerse el principio de Hardy-Weinberg, ya que el número de emparejamientos no sucede al azar
aislamiento, isolating ( \(n\) ), proceso mediante el cual dos poblaciones \((\downarrow)\) se separan en virtud de factores geográficos, ecológicos (p.217), de comportamiento ( \(p .164\) ), reproductores ( \(p .173\) ) o genéticos (p. 196). Después de que dos poblaciones se han separado genética o reproductivamente, no volverán a la misma especie ( \(p .40\) ), aunque vuelvan a unirse geográficamente.
población, population ( \(n\) ), grupo de organismos de la misma especie (p. 40) que ocupan un espacio particular durante un período dado de tiempo. El número real de individuos dentro de una población puede aumentar y descender como resultado de cambios en las tasas de nacimiento y muerte y otros factores, tales como el clima, el aporte de alimentos y la enfermedad
alopátrico, allopatric (adj.), dícese de dos o más poblaciones ( \(\uparrow\) ), de la misma o de especies (p. 40) emparentadas, que podrían cruzarse si no estuvieran geográficamente aisladas \((\uparrow)\) unas de otras.
simpátrico, sympatric (adj.), dícese de dos o más especies ( p .40 ) emparentadas que no están geográficamente aisladas ( \(\uparrow\) ) unas de otras y que podrían cruzarse, aparte de diferencias en el comportamiento (p. 164), el momento de la época reproductora (p. 195), etc
aislamiento ecológico, ecological isolation, aislamiento \((\uparrow)\) que se produce dentro de poblaciones \((\uparrow)\) to ( \(\uparrow\) ) que se produce dentro de poblaciones ( \(\uparrow\) )
como resultado de las diferentes maneras en que escomo resultado de las diferentes maneras
tán relacionados con su medio ( \(p .218\) ).
aislamiento reproductor, reproductive isolation, aislamiento ( \(\uparrow\) ) que se produce dentro de poblaciones ( \(\uparrow\) ) como resultado de diferencias en su comportamiento ( \(p\). 164) reproductor o en el momento de la miento (p. 164) reproductor o
época reproductora (p. 195).

aislamiento genético, genetic isolation, aislamiento \((\uparrow)\) que se produce dentro de poblaciones ( \(\uparrow\) ) como resultado de su incompatibilidad genética (p. 196), de modo que son incapaces de producir descendencia fértil (p. 175).
selección artificial, artificial selection, proceso mediante el que los seres humanos utilizan los principios de la genética (p. 196) y de la evolución (p. 208) para crear razas o hibridos (p. 216) que no se producirian como resultado de la selección natural (p. 208)
cruce consanguineo, inbreeding ( \(n\) ), cruzamiento en tre individuos muy emparentados o incluso autofertilización ( p .175 ) en las plantas. Tiende a reducir la variabilidad genética ( p .196 ) de la población (p.214) y conduce a una mayor frecuencia de ex (p. 214) y conduce a una mayor frecuencia de expresión de los caracteres recesivos (p. 197). Los seres humanos emplean el cruce consanguíneo durante la selección artificial (p.215) para desarrollar características que resultan ser útiles.
cruzamiento no consanguíneo, outbreeding ( \(n\) ), cruzamiento en el que los individuos no están intimamente emparentados. La forma más extrema de este cruce es el producido entre organismos de especies (p.40) diferentes que da lugar a la producción de una descendencia no tértil (p. 175). El cruzamiento no consanguíneo da lugar a una mayor variabilidad genética (p. 196) y un mayor vigor, y pueden ser varios los mecanismos dentro de los organismos que lo facilitan.
vigor de los hibridos, hybrid vigour, aumento en el vigor de factores, tales como el crecimiento o la fertilidad (p. 175) en la descendencia, comparado con los parentales, que resulta del cruce de individuos de líneas genéticamente ( \(p\). 196) diferentes, y que conduce a una mayor heterocigosis (p. 198) y a un aumento en la expresión de los genes dominantes (p. 197).
híbrido, hybrid ( \(n\) ), descendiente de parentales de líneas genéticamente ( p .196 ) diferentes entre sí. hibrídación ( \(n\) ).
generación espontánea, spontaneous generation, idea, refutada por el bacteriólogo francés Louis Pasteur (1822-95) y otros científicos, de que en condiciones adecuadas los organismos, en especial los microorganismos, podrían generarse a partir de compuestos inorgánicos (p. 15).
creación especial, special creation, hipótesis (p. 235) que afirma que toda forma de vida que existe o que ha existido fue creada separadamente por una deidad o fuerza sobrenatural. Las pruebas paleontológicas ( \(p .212\) ) y genéticas ( \(p .196\) ) indican que esto es improbable y pocos científicos admiten hoy seriamente esta hipótesis.
estado permanente, steady state, | hipótesis (p. 235) que sugiere que todos los organismos fueron creados en alguna época del pasado y que desde entonces han permanecido inalterados, siendo cada generación idéntica a su predecesora. Las pruebas paleontológicas (p. 212) indican que este no puede ser el caso.
ecología, ecology ( \(n\) ). ciencia o estudio de los organismos en relación los unos con los otros y con el medio ( \(p .218\) ).
biosfera, biosphere ( \(n\) ), parte de la Tierra que incluye todos los organismos vivientes del planeta y su medio ( \(p .218\) )
bioma, biome ( \(n\) ), parte de la biosfera ( \(\uparrow\) ) que puede ser una gran comunidad \((\downarrow)\) regional de organismos interrelacionados y su medio (p. 218), y que incluiría hábitats ( \(\downarrow\) ) y comunidades, tales como la selva lluviosa tropical o la pradera.
ecosistema, ecosystem ( \(n\) ), unidad o área autocontenida, y quizá pequeña, tal como un bosque, que incluiria todas las partes vivientes y no vivientes de esa unidad.

comunidad, community ( \(n\) ), grupo localizado de cierto número de poblaciones ( \(p .214\) ) de especies ( \(p .40\) ) diferentes que viven e interaccionan entre sí dentro de un ecosistema ( \(\uparrow\) ). Las comunidades pueden describirse como abiertas [nichos ( \(p .219\) ) inestables o «vacíos» que permiten la entrada de nuevas especies a la comunidad] o cerradas (nichos estables y llenos).
hábitat, habitat ( \(n\) ), parte de un ecosistema ( \(\uparrow\) ), tal como un desierto, donde viven organismos particulares porque las condiciones ambientales (p.218) dentro del hábitat son esencialmente uniformes, aunque pueden variar con la estación o, p. ej., entre la base y la copa de los árboles.
microhábitat, microhabitat ( \(n\) ),. pequeña área situada dentro de un hávitat \((\uparrow)\), tal como la parte inferior de una roca.

zona, zone ( \(n\) ), parte de un bioma (p. 217) caracterizado por un grupo particular de organismos dependientes de las condiciones ambientales presentes en esa zona.
clima, climate ( \(n\) ), suma total de todas las condiciones atmosféricas que se interrelacionan, tales como la temperatura, la presión, la precipitación, la solación, etc., que existen en una región particular durante todo el año y en promedio de varios años.
microclima, microclimate ( \(n\) ), clima ( \(\uparrow\) ) que existe en una región pequeña, tal como una ciudad o un bosque, que difiere en algunos aspectos del clima global de la región debido al efecto de otros factores dentro del área; p. ej.: la temperatura en una gran ciudad puede ser significativamente más alta que en los alrededores, debido a que los edificios atrapan y vuelven a desprender el calor
medio, environment ( \(n\) ), suma total de todas las condiciones externas dentro de las cuales se desarrolla y vive un organismo.
territorio, territory ( \(n\) ), zona ocupada y defendida por un animal con fines de reproducción, alimentación, etcétera.
nicho, niche ( \(n\) ), condiciones físicas y biológicas locales que ocupa un organismo en un ecosistema (p. 217). Si en alguna fase más de una especie (p. 40) de organismos intentan ocupar el mismo nicho, competirán entre sí hasta que una es eliminada. Por otro lado, es posible que especies diferentes ocupen el mismo nicho en regiones geográficamente separadas o que una especie evolucione (p.208), mediante selección natural (p.208), para ocupar diferentes nichos.
abiótico, abiotic (adj.), dícese del medio físico al cua están sujetos los organismos, tales como la temperatura, la intensidad de la luz, la disponibilidad de agụa, etc.
acuático, aquatic (adj.), dícese de un medio ( \(\uparrow\) ) con agua o de especies (p.40) que viven principalmente en el agua.
dulceacuícola, freshwater (adj.), dícese de un medio ( \(\uparrow\) ) acuático ( \(\uparrow\) ), tal como un río, que no contiene sal y, por lo tanto, no es marino \((\downarrow)\). Dícese también de una especie ( \(p .40\) ) que vive principalmente en las aguas dulces.
marino, marine (adj.), dícese de un medio ( \(\uparrow\) ) acuático \((\uparrow)\), tal como el océano, que contiene sal. Describe también a una èspecie (p. 40) que vive principalmente en un medio marino.
litoral, littoral ( \(n\) ), zona ( \(\uparrow\) ) de un medio ( \(\uparrow\) ) dulceacuícola \((\uparrow)\) situada entre el borde del agua y una profundidad de aproximadamente seis metros o zona de un medio marino ( \(\uparrow\) ) situada entre los límites de las mareas alta y baja. Una especie litoral es una que vive principalmente en la zona litoral.
anfibio, amphibious (adj.), dícese de un organismo que es capaz o pasa parte de su vida en el agua y otra parte en tierra.
terrestre, terrestrial (adj.), dícese de aquellos organismos que pasan la mayor parte de su vida en tierra.
subterráneo, subterranean (adj.), dícese de aquellos organismos que pasan la mayor parte de su vida debajo de tierra, en cuevas, por ejemplo.
arbóreo, arboreal (adj.), dícese de aquellos organismos que pasan la mayor parte de su vida entre las ramas de los árboles
aéreo, aerial (adj.), dicese de aquellos organismos o partes de ellos que pasan parte o toda su vida en el aire. Las raíces de ciertos árboles crecen en el aire y se las llama aéreas.
factores climáticos, climatic factors, aspectos del medio ( \(p .218\) ) que se agrupan con el clima (p.218), incluyendo la temperatura, la lluvia, etc., y que afectan a la distribución de los organismos.
factores edáficos, edaphic factors, aspectos del medio ( \(p .218\) ) referidos al suelo y que incluyen el contenido de humedad, el pH (p. 15), etc., que afectan a la distribución de los organismos.
biótico, biotic (adj.), dícese de aquellas partes biológicas del medio ( \(p .218\) ) distintas a los factores abióti\(\cos (\mathrm{p} .219)\) a los que están sujetos los organismos, y que incluyen sus relaciones con otros organismos, tales como competencia \((\downarrow)\) por el hábitat (p. 217), etcétera.
predación, predation ( \(n\) ), proceso mediante el cual ciertos animales obtienen su alimento matando y devorando a otros animales. Un predador es un consumidor ( \(p\). 223) secundario y los predadores no se les incluye entre los parásitos ( \(p .110\) )

competencia, competition ( \(n\) ), proceso en el que más de una especie (p. 40) o individuos de la misma especie intentan utilizar los mismos recursos del medio (p.218), debido a que no hay lo suficiente para satisfacer las necesidades de todos los organismos. La competencia conduce a menudo a la mortalidad diferencial (p. 213).
intraespecífica, intraspecific (adj.), dícese de una acción, p. ej., la competencia ( \(\uparrow\) ), que tiene lugar entre individuos de la misma especie (p.40).
interespecífico, interspecific (adj.), dícese de una acción, p. ej., la competencia ( \(\uparrow\) ), que tiene lugar entre diferentes especies (p.40)
mimetismo, mimicry ( \(n\) ), proceso mediante el que un organismo se asemeja a otro y consigue así alguna ventaja; \(p\). ej.: un avispón inofensivo imita la forma y el color de una avispa y, por consiguiente, puede evitar a los predadores ( \(\uparrow\) )
moscarda
sinecología, sinecology ( \(n\) ), estudio o ciencia de todas las comunidades ( \(p .217\) ) y ecosistemas ( \(p .217\) ) dentro de un medio (p. 218) y de sus relaciones entre sí.
autoecología, autecology ( \(n\) ), estudio o ciencia de los individuos de una especie (p.40) en relación unos con otros y con su medio (p. 218).
sucesión, succession ( \(n\) ), secuencia progresiva de cambios que tienen lugar, tras la primera colonización \((\downarrow)\) de un medio particular, en los organismos que ocupan ese medio hasta que se alcanza una posicion estable, donde ya no pueden tener lugar más cambios, a menos que los propios factores abióticos (p. 219), edáficos ( \(\uparrow\) ) o climáticos ( \(\uparrow\) ) se alteren. El proceso se produce con rapidez al principio y después se vuelve más lento a medida que se aproxima la estabilidad

el crecimiento de las plantas altera los factores edáticos y bióticos y pueden coloniza otras especies

una especie pionera coloniza un hábitat

as plantas pioneras crecen y se reproducen

comunidad clímax con numerosas especies vegetales. Las condiciones ya no son adecuadas para las especies pioneras
colonización, colonization ( \(n\) ), llegada y crecimiento hasta la edad reproductora (p. 173) de un organismo hasta la edad reproductora (p. 173) de un organismo
a una zona; es decir, la difusión de las especies (p.40) hacia lugares donde no han vivido antes. co lonizar (V), colonia ( \(n\) )
pionera, pioneer ( \(n\) ), especie (p.40) vegetal que se encuentra en las primeras etapas de una sucesión encue
\((\uparrow)\).
climax, climax (adj.), dicese de una comunidad (p. 217) que, siguiendo la sucesión ( \(\hat{\imath}\) ), ha alcanza do la estabilidad
serie, sere ( \(n\) ), sucesión ( \(\uparrow\) ) de comunidades vegetales que afectan al medio (p. 218) conduciendo a la siguiente comunidad y dando por resultado al final la comunidad clímax ( \(\uparrow\) )
suelo, soil ( \(n\) ), material que forma una superficie que cubre grandes áreas de la Tierra y en el que los organismos encuentran apoyo, protección y nutrientes (p. 92). Es el resultado de la acción de los meteoros y de la descomposición de las rocas en partículas minerales inorgánicas (p. 15), que después vuelven a sufrir la acción de los factores climáticos (p.220) y bióticos (p.220). Su composición depende de la composición de la roca original
componente inorgánico, inorganic component, parte del suelo que resulta de la acción de los agentes meteorológicos sobre la roca madre, rompiéndola en partículas minerales de tamaño variable y cuya composición depende de estructura o composición de la roca madre.
componente orgánico, organic component, parte del suelo que procede de la existencia y la actividad del gran número de organismos vivos que encuentran gran número de organismos vivos que encuentran su hábitat en él.
arena, sand ( \(n\) ), componente inorgánico ( \(\uparrow\) ) en el que el tamaño de las partículas oscila entre 0,02-2,0 milímetros y son angulosas. Un suelo con alto contenido en arena tiende a ser seco debido a la facilidad con la que deja pasar el agua, ácido (p. 15) y con bajo contenido en nutrientes (p.92)
arcilla, clay ( \(n\) ), componente inorgánico ( \(\uparrow\) ) en el que las partículas miden menos de 0,02 milímetros y son relativamente suaves y redondeadas. Un suelo con un alto contenido en arcilla tiende a empantanarse fácilmente, se puede volver compacto y se endurecerá al secarse. Sin embargo, suele ser rico en nutrientes (p.92)
humus, humus ( \(n\) ), componente orgánico ( \(\uparrow\) ) del suelo, que es el resultado de la actividad y la descomposición ( \(\downarrow\) ) de los organismos vivos que hay dentro de él, y que es una mezcla de materiales fibrosos (p. 143) y coloidales, constituida esencialmente por carbono, nitrógeno, fósforo y azufre. El humus mejora la estructura y la textura del suelo, contribuye a retener el agua y los nutrientes (p.92) y eleva la temperatura del suelo, absorbiendo más energía solar debido a su color oscuro
erosión, erosion (n), proceso mediante el cual los productos de la acción de los meteoros sobre una roca o un suelo son arrastrados por la acción natural del viento, del agua corriente o del hielo en movimiento, etcétera

\section*{constitución de marga} se agita el suelo con agua
perfil del suelo, soil profile, serie de distintas capas o estratos que pueden verse en un corte vertical a traves del suelo, desde la roca madre hasta la capa superior, pasando por la roca meteorizada y el sub
 mente plantas verdes y algunas bacterias ( \(p .42\) ) pirámide de la energía disponible capaces de fabricar nutrientes (p.92) a partir de de una red alimentaria uentes inorgánicas (p. 15) por procedimientos tales como la fotosíntesis (p. 93)

\section*{nivel} (superdepredadores) consumidores secundarios (carnívoros)
consumidores
primarios
(herbívoros)
productores

consumidores, consumers ( \(n\). pl.), organismos heteró trofos (p.92) que obtienen su alimento consumiendo a los productores ( \(\uparrow\) ) o a otros consumidores.
descomponedores, descomposers ( \(n . p l\). ), organismos que obtienen sus nutrientes (p.92) alimentándose de organismos muertos, descomponiéndolos en sustancias más sencillas y poniendo así otros nu trientes a disposición de los productores. descomposición ( \(n\) ).
nivel trófico, trophic level, posición particular que ocu pa un organismo en un ecosistema (p.217) con res pecto al numero de pasos que le separan de las plantas de las que obtiene su alimento. Los productores ( \(\uparrow\) ) se encuentran en el nivel trófico inferior mientras que los predadores (p. 220) ocupan los niveles más altos

ciclo de carbono, carbon cycle cadena o ciclo de sucesos mediante los que el carbono circula a través cesos mediante los que el carbono circula a traves
del medio (p. 218) y de los organismos vivientes. Las plantas absorben dióxido de carbono de là atmósfera y lo convierten en carbohidratos ( p .17 ), proteínas (p.21) y grasas. Parte del dióxido de carbono es devuelto a la atmósfera durante la respiración (p. 112) de las plantas. Éstas son comidas por los herbívoros (p. 105), los cuales, a su vez, son devorados por los carnívoros (p. 105). Cuando los herbívoros y los carnívoros mueren, sirven de alimento a los saprófitos (p. 92) y a los descomponedores (p. 223), de modo que el carbono es devuelto al suelo o a la atmósfera como producto de la respiración de las bacterias (p. 42) y de los hongos (p.46).
ciclo del oxígeno, oxygen cycle, cadena o ciclo de sucesos mediante los que el oxígeno circula o se desplaza a través del 'medio' ( \(p\). 218) y de loslorganismos vivientes.
ciclo del nitrógeno, nitrogen cycle, cadena o ciclo de sucesos mediante los que el nitrógeno circula a través del medio (p.218) y de los organismos vivientes Algunas bacterias (p.42) y algas ( \(p .44\) ) pueden utilizar directamente el nitrógeno, y la iluminación, actuando sobre el oxígeno y el nitrógeno atmosféricos los hace combinarse en óxidos nitroso y nítrico que se disuelven con el agua de la lluvia para penetrar así en el suelo y formar nitratos y nitritos. La mayoría de las plantas utilizan el nitrógeno en forma de nitra tos y los usan en la producción de proteínas (p.21) Las plantas son comidas por los animales herbívoros (p. 105) que, a su vez, son devorados'por los carnivoros (p. 105), que aprovechan el nitrogeno en la producción de proteínas animales. Cuando las plantas y los animales mueren, el nitrogeno vuelve al suelo a través de las bacterias' nitrificantes, en forma de nitritos, amoniaco y compuestos amó nicos
ciclo del nitrógeno

ciclo del agua, water cycle, cadena o ciclo de sucesos mediante los que el agua, esencial para la vida, circula a través del medio (p.218) y de los organismos vivientes.
cadena alimentaria, food chain, secuencia de organismos desde productores (p. 223) a consumidores (p.223), que se alimentan a distintos niveles, tróficos Una cadena alimentaria sencilla es: la hierba crece, una vaca come la hierba, un ser humano come la una vaca come la hierba, un ser hum de la vaca y bebe su leche.
red alimentaria, food web, grupo interconectado de cadenas alimentarias ( \(\uparrow\) ). Existen pocos sistemas tan sencillos como una cadena alimentaria y muchas cadenas pueden enlazarse para formar una red compleja.

biomasa, biomass ( \(n\) ), volumen o masa total de todos los organismos vivientes de una zona particular, una comunidad (p. 217) o de la propia Tierra.
pirámide ecológica, pyramid of biomass, representación en diagrama, que toma la forma de una pirámide de pendiente suave, para mostrar la biomasa existente en cada nivel trófico (p. 223)
producción estable, standing crop, cantidad total de material viviente nutricional (p.92) en la biomasa ( \(\uparrow\) ) de una zona dada en un momento particular.
ritmo diurno, diurnal rhythm, secuencia rítmica de sucesos metabólicos (p.26), tal como el movimiento de las hojas en las plantas, que tiene lugar según un esquema de aproximadamente veinticuatro horas, y que puede demostrarse que existe en todos los organismos vivientes, incluso aunque estén aislados de su medio (p. 218) externo normal.
ritmo circadiano, circadian rhythm \(=\) ritmo diurno \((\uparrow)\).
ritmo anual, annual rhythm, secuencia rítmica de sucesos metabólicos ( p .26 ), tal como la germinación (p. 168), la floración y la fructificación en las plantas, que tiene lugar según un esquema de aproximadamente un año, incluso si están iaslados de su medio (p. 218) externo normal

plancton, plankton ( \(n\) ), cualesquiera de los varios organismos, generalmente diminutos o microscópicos (p. 9), que flotan libremente en un medio (p. 218) acuático, que no tienen medios visibles de locomoción (p. 143) y que para su distribución dependen de las corrientes de agua. No van fijos a ningún otro organismo o sustrato
fitoplancton, phytoplankton (n), plancton ( \(\uparrow\) ) vegetal, especialmente diatomeas, que son una fuente importante de alimentos para otros organismos, tales como muchas especies (p. 40) de ballenas
zooplancton, zooplankton (n), plancton ( \(\uparrow\) ) animal que incluye las larvas ( p .165 ) de muchas especies (p. 40) de peces.
pelágico, pelagic (adj.), dícese de las aguas superiores de un medio (p. 218) acuático, especialmente marino, que se contrapone al fondo del océano de un lago y de los organismos que viven en ellas.
bentónico, benthic (adj.), dicese del fondo de un me dio (p. 218) acuático, especialmente marino, y de los organismos que viven en el.
asociación, association (n), cualquier relación existen te entre organismos que es beneficiosa para uno o todos ellos. En las plantas, una comunidad (p. 217) climax ( p .221 ) dominada por una o un pequeño nú mero de especies (p.40) y que recibe entonces su nombre. Véase también parasitismo (p. 110).
simbiosis, symbiosis ( \(n\) ), asociación (p.227) entre do o más especies ( p .40 ) de organismos para mutuo beneficio, tal como la asociacion de las micorrizas (p. 49) de ciertos hongos (p. 46) con las raíces de arboles, donde éstos proporcionan nutrientes (p. 92 ) para el hongo, el cual, a su vez, ayuda a la absorción de agua y aporta nitratos a las raíces

comensalismo, commensalism ( \(n\) ), es la asociación (p. 227) en la que una especie (p. 40) de organismo, e comensal, se beneficia, mientras que la otra especie ni resulta perjudicada ni saca ningún provecho. Las bacterias (p. 42) en el intestino (p. 98) de los mamí feros ( \(p .80\) ) son comensales
mutualismo, mutualism ( \(n\) ), asociación (p. 227) entre dos o más especies ( \(p .40\) ) en la que ambas se benefician. En algunos casos de mutualismo, ninguna especie es capaz de sobrevivir sin la otra, mientras que en otros ambas son capaces de sobrevivir inde pendientemente. Es una forma de simbiosis ( \(\uparrow\) ); p ej., una especie de anémona de mar vive sobre el caparazón de un cangrejo ermitaño y se beneficia del hecho de ser transportada hasta nuevos lugares donde alimentarse de los residuos del cangrejo mientras que éste queda protegido de la predación (p. 220) por los tentáculos urticantes de la anémona.
epifita, epiphyte (n), cualquier planta, tal como algu nos helechos o líquenes (p. 49), que crece sobre otras plantas en una asociación (p. 227) de comensalismo, usándolas sólo como soporte y no realizando ninguna actividad de parasitismo ( p .110 ).
epizoo, epizoite ( \(n\) ), cualquier animal, como el pez ré mora, que se fija mediante una fuerte ventosa a un tiburón, que vive permanentemente sobre otro animal aprovechándolo para el transporte, etc., pero sin parasitarlo (p. 110)


\section*{micorriza ectotrofa} corte longitudinal

control biológico
p. ej.: se introducen mariquitas para
controlar a los áfidos (plaga)

explotacion agropecuaria, farming ( \(n\) ), proceso en el que los seres humanos aprovechan las plantas y animales naturales para proporcionarse alimento para sus propias necesidades, cultivando especies (p. 40) silvestres o desarrollando nuevos tipos de organismos, y después sembrándolos, plantándolos, fomentándolos o protegiéndolos.
pesca, fishery ( \(n\) ), proceso en el que los seres humanos capturan peces u otros animales acuáticos para alimentarse y aprovechan los procesos naturales de control de poblaciones (p. 214) para aumentar el tamaño de las capturas
máximo rendimiento obtenible, maximum sustainable yield, tamaño máximo de captura de, p. ej., peces que puede conseguirse y mantenerse durante años en una zona determinada de agua, que es pescada de modo que las reservas son mayores de lo que serían si permanecieran sin explotar. Los peces adultos son retirados del agua para servir de alimeno, de modo que los jóvenes no tienen que competir en igual medida para el alimento y su supervivencia hace aumentar la biomasa ( \(p .226\) ) de las aguas.
agricultura, agriculture ( \(n\) ), conjunto de los procesos asociados con el cultivo de alimentos de manera sistemática, incluyendo el cultivo de la tierra, el cuidado de las reservas, el desarrollo de nuevos tipos y la destrucción de las especies (p. 40) competidoras ( p 220 ), de modo que el rendimiento de una determinada zona puede incrementarse para satisfacer las demandas crecientes de una población (p.214) humana en aumento.
plaga, pest ( \(n\) ), cualquier especie ( \(p .40\) ) de animal o planta que, a la luz de los métodos modernos de agricultura ( \(\uparrow\) ) donde se dedican grandes extensiones de tierra a una sola especie, no está sujeta a los controles de un ecosistema (p. 217) natural y que puede aumentar rápidamente en número para destruir la cosecha
mala hierba, weed ( \(n\) ), cualquier especie (p. 40) de planta capaz de crecer en una zona que ha sido dedicada al cultivo de plantas alimenticias y que competirá con ellas por el espacio, la luz, el agua y los nutrientes (p. 92).
control biológico, biological control, método de reducir el número de malas hierbas ( \(\uparrow\) ) o plagas ( \(\uparrow\) ) introduciendo un predador ( \(p .220\) ) natural de la especie (p. 40) parásita. Si el predador también es capaz de alimentarse de especies que no son consideradas plaga, su número no se reducirá cuando descienda el de la plaga. Se intenta mantener así un equilibrio natural entre la plaga y el predador.
pesticida, pesticide ( \(n\) ), cualquier agente, por lo general químico, que se usa para controlar y destruir plagas (p. 229).
herbicida, herbicide ( \(n\) ), cualquier agente, generalmente químico, que se usa para controlar o destruir malas hierbas (p. 229).
purificación del agua, water purification, conjunto de los procesos, incluyendo almacenamiento, filtrado y esterilizado, que usan las autoridades responsables del suministro de agua para mantener el agua potable apta para el consumo humano. Ya que el agua potable se extrae de los ríos, lagos y manantiales subterráneos, es importante asimismo garantizar que los agentes polucionantes \((\downarrow)\), procedentes de la industria o de la agricultura (p. 229), no alcancen nivees inaceptables en los suministros.
tratamiento de aguas residuales, sewage treatment, conjunto de los procesos, incluidos la eliminación de odos por sedimentación el tamizado para separar las partículas residuales grandes, la oxidación (p.32) biológica, la eliminación del cascajo, el filtrado biologica, para garantizar que el vertido, que de lo contraetc., para garantizar que el vertido, que de lo contra-
rio contendría residuos humanos, etc., puede ser rio contendría residuos humanos, etc., puede ser
reintegrado al ciclo del agua ( \(p .226\) ) sin riesgo de reintegrado al ciclo del agua
propagar enfermedades, etc.
conservación, conservation ( \(n\) ), uso de los recursos naturales de modo que no sean agotados. Suele considerarse como tal el estudio, la administración y la protección de los ecosistemas (p. 217), hábitats (p. 217) o especies (p. 40) de organismos con el fin de mantener el equilibrio natural de la vida salvaje y su medio ( p .218 ).
especies amenazadas, endangered species, cual quier especie (p.40) de animal o planta que, por cambios en el medio (p. 218) natural o por la intervención humana, está en peligro de muerte o de extinción.
sobreexplotación, over-exploitation ( \(n\) ), uso de los recursos naturales, de modo que los ecosistemas (p. 217) naturales son perturbados de modo irreversible, los hábitats (p. 217) destruidos o los organismos amenazados de extinción
polución, pollution ( \(n\) ), acción de introducir en el me dio ( p .218 ) natural cualquier sustancia o agente que puede perjudicar a ese medio y que se añade a mayor velocidad de lo que el medio es capaz de deshacerse de él. agente polucionante ( \(n\) ). contaminante ( \(n\) )
polución de las aguas, water pollution, polución ( \(\uparrow\) ) de los hábitats (p. 217) marinos y dulceacuícolas mediante la introducción irreflexiva de residuos humanos, agrícolas ( \(p\). 229) e industriales en los ríos os lagos y los océanos

principales recursos naturales explotados por el hombre
demanda de oxígeno, oxygen demand, condición que existe en los medios acuáticos en los que se han introducido agentes contaminantes ( \(\uparrow\) ) que favorecen el desarrollo de bacterias (p. 42) aerobias (p. 32), agotando los niveles de oxígeno en el agua Así, se reduce la vida vegetal natural del medio y con ella la vida animal dependiente de las plantas
eutrofización, eutrophication ( \(n\) ), situación que se pre senta cuando se introduce un exceso de nutrientes (p. 92) en un hábitat (p. 217) dulceacuícola, causan do un gran crecimiento de determinados tipos de al gas (p. 44). Cuando los nutrientes han sido utilizados, las algas mueren y los descomponedores (p. 223) bacterianos (p. 42), que se alimentan de las algas muertas, consumen el oxígeno del agua dando lugar a una demanda de oxígeno \((\uparrow)\).
proliferación de algas, algal bloom, aumento grande en la población (p. 214) de algas que tiene lugar en un medio (p.218) acuático como resultado de la eutrofización (p. 231)
polución atmosférica, air pollution, polución (p. 230) de la atmósfera como resultado de la combustión de combustibles fósiles, tales como carbón y petróleo, con la introducción en el aire de compuestos orgánicos (p. 15) e inorgánicos (p. 15), tales como dióxido de carbono, monóxido de carbono, dióxido de azufre, etcétera.
smog, smog (n), niebla contaminada. Es una mezcla de niebla y humo.
polución marina, marine pollution, polución (p. 230) de medio (p. 218) marino, principalmente mediante petróleo crudo como resultado del lavado ilegal de los depósitos de los petroleros o debido a pérdidas accidentales. Los daños a las poblaciones (p. 214) de aves son muy grandes y bien conocidos, aunque se produce también una intoxicación del plancton (p. 227) marino, que de esta manera afecta a toda la red trófica del mar
polución radiactiva, radioactive pollution, es la polución (p. 230) del medio (p. 218) debido a fugas accidentales de centros de producción de energía nuclear o al vertido de productos de desechos nucleares. Los materiales radiactivos que llegan al medio ambiente pueden provocar daños en los cromosomas (p. 13) y mutaciones (p. 206)
polución terrestre, terrestrial pollution, polución (p. 230) del medio (p. 213) terrestre por el vertido de parásitos ( p .92 ), tales como ciertas bacterias ( \(p .42\) ), que pueden pasar de un individuo a otro.
control de natalidad, birth control, intentos que hace el hombre de limitar artificialmente el rápido desarrollo que tiene lugar en la población (p.214) humana del planeta, que si no posiblemente daría lugar a desastrosos esfuerzos por la obtención de alimentos y otros recursos no renovables. Implica el empleo de métodos de prevención de la concepción con el uso de anticonceptivos, tales como la píldora, la vasectomía, etcétera.
higiene, hygiene ( \(n\) ), ciencia que trata de la conservación de la salud humana mediante medios, tales como mejoras de la sanidad, para evitar la propagación de las enfermedades. Se cree que las mejoras higiénicas se cuentan entre los factores más importantes en la elevación de las esperanzas de la vida humana.

polución del agua

enfermedad, disease ( \(n\) ), cualquier trastorno del cuerpo o de un órgano
infecciosa, infectious (adj.). dicese de una enfermedad causada por virus ( \(p .43\) ) u otros organismos parásitos (p. 92), tales como ciertas bacterias (p. 42), que pueden pasar de un individuo a otro.
contagiosa, contagious (adj.), dicese de una enfermedad que puede pasar de un individuo a otro por contacto, que puede ser directo o a través de objetos que han sido contaminados por el individuo enfermo, y que despues maneja el otro individuo
antiséptico, antiseptic (adj.). dicese de cualquier agente que destruye los microorganismos que invaden el cuerpo, dando lugar a una enfermedad.
aséptica, aseptic (adj.), dícese de las condiciones en las que no hay presentes microorganismos causantes de enfermedades
antibiótico, antibiotic ( \(n\) ), cualquier sustancia, produci da por un organismo vivo, p. ej., el hongo (p. 46) Penicillium, que es tóxica para otros organismos vivos. Las sustancias antibióticas se usan en medicina para destruir microorganismos causantes de enfermedades.
anticuerpo, antibody ( \(n\) ), proteína (p. 21) producida por un organismo después de la invasión de los fluidos corporales por una sustancia que normalmente no está presente y que puede ser perjudicial. El anticuerpo se combina con la sustancia invasora para eliminarla asi del cuerpo
inmunidad, inmunity ( \(n\) ), estado en el que los organis mos están protegidos contra la invasión de enfermedades y que suele implicar la produccion de anticuerpos ( \(\uparrow\) ).
inmunidad activa, active inmunity, inmunidad ( \(\uparrow\) ) en la que los mecanismos defensivos del cuerpo son estimulados por la invasion de microorganismos extraños para producir anticuerpos ( \(\uparrow\) )
inmunidad pasiva, passive inmunity, inmunidad ( \(\uparrow\) ) en la que los mecanismos defensivos del cuerpo no son estimulados por la invasion de microorganismos extraños, sino que los anticuerpos ( \(\uparrow\) ) le han sido ransferidos procedentes de otro animal en el que se han estimulado inmunidad activa ( \(\uparrow\) )
inmunidad heredada, inherited inmunity, inmunidad pasiva ( \(\uparrow\) ) en la que la resistencia a ciertas enferme dades es heredada genéticamente (p. 196) de los padres.
inmunidad adquirida, acquired immunity, inmunidad activa ( \(\uparrow\) ) por exposición a una enfermedad infecciosa ( \(p\). 233) que es demasiado limitada para causar los síntomas de la enfermedad o inmunidad pasiva (p. 233), mediante la transferencia de anticuerpos (p. 233) de la madre a su descendencia a través de la placenta (p. 192)
vacunación, vaccination (n), inyección en el cuerpo de un animal de formas modificadas de los microorganismos que causarían una enfermedad particular, de modo que el cuerpo produce anticuerpos (p. 233) que resistirán a cualquier posible invasión de la propia enfermedad. El animal consigue así una inmunidad adquirida \((\uparrow)\).
vacuna, vaccine ( \(n\) ), cualquier sustancia que contiene antígenos \((\downarrow)\), que es inyectada en el cuerpo de un animal para producir anticuerpos (p.233) y dar al animal inmunidad adquirida ( \(\uparrow\) ) a enfermedades específicas.
antígeno, antigen ( \(n\) ), cualquier sustancia, producida por un microorganismo, que estimulará la producción de anticuerpos (p. 233)
epidémica, epidemic (adj.), dícese de una enfermedad que no está presente normalmente en una poblacion (p. 214) y que, por consiquiente, se extende rá rápidamente de un lindividuo a otro e infectará (p.233) a una gran parte de la población debido a que no existeinmunidad (p. 233) natural contra la in feación.
endémica, endemic (adj.), dícese de una enfermedad que se produce de manera natural en poblaciones (p. 214) particulares, geográficamente delimitadas.
pandémica, pandemic (adj.) dicese de una enferme dad que se produce en toda la población (p. 214) de un continente entero o incluso del mundo.
alergia, allergy ( \(n\) ), condición en la que ciertos individuos pueden ser particularmente sensibles a sustan cias que resultan inofensivas para otros individuos p. ej.: los ataques de asma pueden ser estimulados por el polvo o el polen (p. 181). Las reacciones alér gicas pueden ser inflamaciones o tumefacciones.
sintoma, symptom (n), signo o condición de la presencia de, p. ej., una enfermedad
contraer, contract (v), (1) adquirir una enfermedad; (2) acción de acortamiento de un músculo (p. 143). contracción ( \(n\) ), contráctil adj.)

\section*{inmunidad adquirid}
nimal con microorganismo patógenos

unos pocos microorganismo son inyectados en otro anima

los antígenos producidos por los microorganismos hacen que el animal produzca anticuerpos

método cientifico, scientific method, medio de obtener conocimientos sobre el entorno ( p .218 ) mediane observación \((\downarrow)\), que conduce al desarrollo de una hipótesis \((\downarrow)\). A partir de la hipótesis, se hacen predicciones ( \(\downarrow\) ) que son comprobadas mediante experimentos \((\downarrow)\) que incluyen controles \((\downarrow)\).
observación, observation ( \(n\) ), suceso o fenómeno naural que es visto o se aprende
hipótesis, hypothesis (n), idea que ha sido creada pa ra explicar la aparición de un suceso o sucesos naturales detectados por la observación ( \(\uparrow\) ).
predicción, prediction ( \(n\) ), proceso de prever sucesos o fenómenos probables en un sistema dado a parti de otros constatados por la observacion ( \(\uparrow\) ). Las predicciones resultan de las hipótesis ( \(\uparrow\) ).
experimento, experiment \((n)\), medio de examinar una hipótesis \((\uparrow)\) ensayando una predicción \((\uparrow)\) hecha sobre la base de la hipótesis.
control, control ( \(n\) ), experimento ( \(\uparrow\) ) realizado al mis mo tiempo que el experimento principal, que difiere de él únicamente en un factor. Los controles son medios de ensayar aquellos factores que afectan a un fenómeno.
teoria, theory ( \(n\) ), idea o conjunto de ideas resultantes del método científico ( \(\uparrow\) ), usado como principios \((\downarrow)\), para explicar fenómenos naturales que han sido constatados por la observación ( \(\uparrow\) )
fenómeno, phenomenon ( \(n\) ), cualquier hecho observable que puede ser descrito científicamente
principio, principle ( \(n\) ), ley o verdad general que ocupa una posición central con respecto a otras leyes
adaptación, adaptation ( \(n\) ), cambio en la estructura, la función, etc., que se adecua a un nuevo uso. Una adaptacion particular puede hacer que un organis mo esté en mejores condiciones para sobrevivi (p. 209) en su medio (p. 218)
estructura, structure ( \(n\) ), medio por el que todas las partes de un objeto \(u\) organismo, o parte de un organismo, se ordenan. La estructura de cualquier cosa está íntimamente relacionada con la función que realiza.
función, function ( \(n\) ), acción normal de un objeto o parte de un organismo; p. ej.: la función del oído (p 157) es oir (p. 159)
adyacente, adjacent (adj.), cerca, próximo o junto
amorfo, amorphous (adj.), sin forma; p. ej.: células que no se han diferenciado
anterior, anterior (adj ), en, cerca o hacia la parte frontal (o cabeza) de un animal, generalmente el extremo dirigido hacia delante cuando el animal se mueve [en los seres humanos la parte anterior es la ventral (p. 75)]
articulación, articulation (n), junta o conexión móvil o inmóvil entre dos objetos.
eje, axis ( \(n\) ), línea recta, real o imaginaria, alrededor de la cual gira un objeto; p. ej.: el eje de simetría (p. 60).
cavidad, cavity ( \(n\) ), hueco o espacio; p. ej.: la cavidad bucal (p. 99).
comatoso, comatose (adj.), dícese del animal ináctivo y sumido en sueño profundo como, p. ej., durante la hibernación.
comparable, comparable (adj.), dícese de dos o más objetos de calidad similar. comparar-compare (v).
concentración, concentration ( \(n\) ), intensidado cantidad de una sustancia en, por ej., una solución (p. 118).
constituyente, constituent ( \(n\) ), parte de un todo.
constreñir, constrict (v), hacer más estrecho, p. ej., reducir el diámetro de los vasos sanguíneos (p. 127). constricción - constriction ( \(n\) ).
dilatar, dilate ( \(v\) ), hacer más ancho, p. ej., los vasos sanguíneos (p. 127). dilatación - dilatation (n).
circunvolucionado, convoluted (adj.), enrollado en una espiral, p. ej., los túbulos espiralizados de los riñones (p. 136)
coordinar, co-ordinate (v), hacer que dos o más cosas, p. ej. las extremidades, actúen juntos con el mismo fin. coordinación - co-ordination ( \(n\) ).
cristalizar, crystallize (v), formar cristales (formas regulares).
deficiencia, deficiency ( \(n\) ), escasez o falta de algo; \(p\) ej.: la deficiencia en vitaminas (véase p. 238)
desarrollo, development ( \(n\) ), fase del crecimiento que incluye cambios en las estructuras y el aspecto de los nuevos órganos y tejidos (p.83).
conducto, duct ( \(n\) ), tubo formado por células.
equilibrio, equilibrium ( \(n\) ), estado en el que un objeto es o se encuentra estable debido a que todas las fuerzas que actúan sobre él son iguales
esencial, essential (adj.), muy necesario.
externo, external (adj.), en el exterior o por fuera
interno, internal (adj.), en el interior o por dentro
extracto, extract (v), retirar o sacar una sustancia de un material particular.
filtro, filter ( \(n\) ), instrumento usado para retener y separar sólidos y otras sustancias de los líquidos. filtración - filtration ( \(n\) ).
flexionar, flex (v), contraer un músculo (p. 143)
gradiente, gradient ( \(n\) ), aumento o disminución de una sustancia con la distancia
aumentar, increase (v), volverse o hacerse más grande de alguna manera; p. ej.: en tamaño, valor, concentración, etc
disminuir, decrease \((n)\), volverse o hacerse más pequeño de alguna manera; p. ej.: en tamaño, valor, concentración, etc.
aislante, insulation (n), cualquier material usado para evitar el paso de calor o electricidad; p. ej.: el pelo aísla al cuerpo de los mamíferos (p.80) y las plumas (p. 147) al de las aves.
intermedio, intermediate (adj.), dícese de un objeto situado en el medio; p. ej.: una fase intermedia en el metabolismo (p. 26).
Iubrificar, lubricate \((v)\), hacer suave o deslizante a fin de que el movimiento de las partes de una máquina o de un organismo sean más fáciles. Iubrificación lubrication ( \(n\) ).
descendencia, offspring ( \(n\) ) = progenia
paralelo, parallel (adj.), dícese de líneas o planos que discurren en la misma dirección y nunca se encuentran.
permeable, permeable (adj.), dícese, pör ej., de una membrana (p. 14) que permite el paso de una sustancia. Véase también membrana semipermeable (p. 118).
posterior, posterior (adj.), en, cerca o hacia el extremo final de un animal, por lo general dirigida hacia atrás cuando el animal se mueve.
producto, product ( \(n\) ), sustancia que es producida.
producto secundario, byproduct ( \(n\) ), sustancia creada en el curso de la producción de otra sustancia
protuberancia, protuberance ( \(n\) ), parte o cosa que sobresale, p. ej., un pseudópodo (p. 44) de ameba.
sedentario, sedentary (adj.), dícese de un animal que permanece unido a la superficie y que no se desplaza a ningún lugar
sintetizar, synthesize (v), hacer una sustancia a partir de sus partes.
extensible, tensile (adj.), dícese de un material que es capaz de estirarse.
transparente, transparent (adj.), dícese de un materia que permite el paso de la luz a través suyo y a través del cual se pueden ver perfectamente objetos.
viscoso, viscous (adj.), dícese de un fluido que no fluye; es decir, bastante sólido.
AṔENDICE UNO
Vitaminas
\begin{tabular}{|c|c|c|c|c|c|}
\hline NOMBRE & LETRA & FUENTES PRINCIPALES & FUNCIÓN & EFECTOS DE SU FALTA & \begin{tabular}{l}
SOLUBLES \\
EN GRASAS (G) \\
0 AGUA (A)
\end{tabular} \\
\hline retinol & A & hígado, leche, hortalizas con pigmentos amarillos o naranja, por ej., zanahorias & percepción de la luz, crecimiento sano, resistencia a la enfermedad & ceguera nocturna, raquitismo, infecciones, sequedad y degeneración de la córnea & - \(\quad\) - \\
\hline calciferol & D & hígado de pescado, huevos, queso, acción de la luz solar sobre la piel & absorción de calcio y fósforo y su incorporación a los huesos & trastornos óseos, p. ej., raquitismo & G \\
\hline tocoferol & E & muchas plantas, tales como germen de trigo y hortalizas verdes & respiración celular, conservación de otras vitaminas & no se han demostrado sus efectos en seres humanos, pero en ratas puede causar esterilidad y distrofia muscular & - \({ }_{\text {c }}\) \\
\hline filoquinona & K & hortalizas verdes, yema de huevo, hígado & síntesis de los agentes de coagulación de la sangre & hemorragias, tiempos de coagulación prolongados & s G \\
\hline
\end{tabular}
\begin{tabular}{lllllll} 
& LETRA & \begin{tabular}{l} 
FUENTES \\
PRINCIPALES
\end{tabular} & FUNCIÓN & \begin{tabular}{l} 
EFECTOS DE \\
SU FALTA
\end{tabular} & \begin{tabular}{l} 
SOLUBLES \\
EN GRASAS (G) \\
OAGUA (A)
\end{tabular} \\
NOMBRE
\end{tabular}

\section*{Nutrientes}
dióxido de carbono, carbon dioxide, gas incoloro e inodoro a temperatura y presión normales, cuya fórmula química es \(\mathrm{CO}_{2}\). Es más denso que el oxígeno y se encuentra en la atmósfera en niveles inferiores. Es absorbido por las plantas que lo utilizan para sintetizar complejos orgánicos, especialmente mediante la fotosíntesis. Es un producto de desecho de la respiración.
oxígeno, oxygen, gas incoloro e inodoro a temperatura y presión normales, cuya fórmula química es \(\mathrm{O}_{2}\). Es un elemento esencial en los compuestos orgánicos e inorgánicos, tales como carbohidratos, proteínas y grasas, que constituyen todos los organismos vivientes. Las plantas lo absorben en forma de oxígeno gaseoso durante la noche, y como dióxido de carbono y agua, y lo liberan en forma de gas en la fotosíntesis. Es esencial para la respiración de los organismos aerobios.
agua, water, líquido incoloro e insípido a temperatura y presión normales, de fórmula química \(\mathrm{H}_{2} \mathrm{O}\). La mayoría de los nutrientes son solubles en agua. El agua participa en la mayoría de las reacciones químicas implicadas en la nutrición y es también un fluido esencial en el transporte de los materiales a través del cuerpo de un organismo. Es un producto de desecho de la respiración y esencial en la fotosíntesis.

\section*{NUTRIENTES DE LAS PLANTAS}

\section*{macronutrientes}
potasio, potassium, macronutriente absorbido por las plantas en forma de sales potásicas y que es necesario como componente de los enzimas y de los aminoácidos. La carencia de potasio acaba por causar la muerte de la planta y se manifiesta mediante márgenes amarillentos en las hojas
calcio, calcium, macronutriente absorbido por las plantas en forma de sales cálcicas y que es necesario en las paredes celulares. La carencia de calcio provoca un desarrollo enano de las raíces y los brotes debido a la muerte de los ápices de crecimiento.
nitrógeno, nitrogen, macronutriente presente en la atmósfera en forma de gas incoloro e inodoro a presiones y temperaturas normales, pero que las plantas lo absorben en forma de nitratos. Es una parte esencial de las proteínas, aminoácidos, etcétera. La carencia de nitrógeno provoca un desarrollo enano de la planta y el amarilleamiento de las hojas.
fósforo, phosphorus, macronutriente absorbido por las plantas en forma de \(\mathrm{H}_{2} \mathrm{PO}_{4}\) y que se encuentra en las proteínas, el ATP y los ácidos nucleicos. La carencia de fósforo hace que la planta se desarrolle enana y las hojas adquieran un color verde oscuro sombrío
magnesio, magnesium, macronutriente absorbido por las plantas en forma de sales magnésicas y que se encuentra en la clorofila. La carencia de magnesio provoca el amarilleamiento de las hojas.
azufre, sulphur, macronutriente absorbido por las plantas y que se encuentra en ciertas proteínas. La carencia de azufre provoca un desarrollo escaso de las raíces y un amarilleamiento de las hojas.
hierro, iron, macronutriente absorbido por las plantas en forma de sales férricas o ferrosas y que se encuentra en los citocromos. La carencia de hierro provoca el amarilleamiento de las hojas.

\section*{micronutrientes}
boro, boron, micronutriente absorbido por las plantas en forma de boratos. Es importante después de la polinización en la estimulación de la germinación de los granos de polen, así como en la absorción de calcio a través de las raíces. La carencia de este micronutriente causa ciertas-enfermedades en las plantas, tales como el acorchamiento de las manzanas
cinc, zinc, micronutriente absorbido por las plantas en forma de sales de cinc. Es importante en la activación de ciertosienzimas y en la producción de las hojas. La carencia de cinc da como resultado un desarrollo anormal de las hojas.
cobre, copper, micronutriente abosrbido por las plantas en forma de sales de cobre. Es necesario para algunos enzimas. La carencia de cobre provoca durante el desarrollo de las plantas la aparición de ciertos tipos de anormalidades.
molibdeno, molybdenum, micronutriente absorbido por las plantas en forma de sales de molibdeno. Es importante en el funcionamiento de ciertas enzimas para la reducción del nitrógeno. La carencia de molibdeno da como resultado una reducción del desarrollo general de la planta.
cloro, chlorine, micronutriente absorbido por las plantas en forma de cloruros. Es importante en la ósmosis, etc., aunque su carencia no se manifiesta con claridad.
manganeso, manganese, micronutriente absorbido por las plantas en forma de sales de manganeso. Es un activador importante de ciertos enzimas. La carencia de manganeso da como resultado el amarilleamiento de las hojas, así como la aparición de un moteado gris.

\section*{NUTRIENTES DE LOS ANIMALES}

\section*{minerales}
calcio, calcium, mineral presente en los productos lácteos, el pescado, las aguas duras y en el pan, necesario para la salud de los huesos y de los dientes, y como ayuda para la coagulación de la sangre y para los músculos. Un adulto humano medio requiere 1,1 gramos diarios y el contenido total en el cuerpo es de aproximadamente 1000 gramos.
fósforo, phosphorus, mineral presente en la mayoría de los alimentos, pero especialmente en el queso y en los extractos de levadura, necesario para la salud de los huesos y de los dientes, y que participa en el metabolismo del ADN, el ARN y el ATP. Un adulto humano medio requiere, 1,4 gramos diarios y el contenido total en el cuerpo es de aproximadamente 780 gramos.
azufre, sulphur, mineral presente en los alimentos que contienen proteínas, tales como los guisantes, las judías y los productos lácteos. Es necesario como elemento constituyente de ciertas proteínas, tales como la queratina, vitaminas y la tiamina. Un adulto humano medio requiere 0,85 gramos diarios y la cantidad total en el cuerpo es de aproximadamente 140 gramos.
potasio, potassium, mineral presente en numerosos alimentos, tales como patatas, champiñones, carnes y coliflores, necesario para el equilibrio ácido-base y la transmisión nerviosa. El ser humano requiere 3,3 gramos diarios y la cantidad total en el cuerpo es de aproximadamente 140 gramos.
sodio, sodium, mineral presente en numerosos alimentos «salados», pero especialmente en la sal común de mesa (cloruro sódico), el queso y el tocino ahumado, y que es necesario para la transmisión nerviosa y el equilibrio ácido-base. El ser humano medio necesita aproximadamente 4,4 gramos diarios y el contenido total en el cuerpo es de unos 100 gramos.
cloro, chlorine, mineral, en forma de iones cloro, que se encuentra con el sodio en la sal de mesa y en las carnes, que es necesario para el equilibrio ácido-base y en la osmorregulación. El adulto humano medio requiere 5,2 gramos diarios y el contenido total en el cuerpo es de aproximadamente 95 gramos.
magnesio, magnesium, mineral presente en la mayoría de los alimentos, pero en especial en el queso y las hortalizas verdes, que es necesario para enzimas en el metabolismo. El adulto humano medio requiere aproximadamente 0,34 gramos diarios y el contenido total del cuerpo es de unos 19 gramos.
hierro, iron, mineral presente en el hígado, los huevos, la carne de vaca y en algunas aguas potables; es un constituyente esencial de la hemoglobina y la catalasa. El adulto humano medio requiere 16 miligramos diarios y la cantidad total en el cuerpo es de unos 4,2 gramos.
fluoro, fluorine, mineral presente en forma de fluoruro en el agua marina y los alimentos de origen marino, y que se añade a veces al agua potable. Es un constituyente de los huesos y de los dientes y evita la caída de éstos. El ser humano medio requiere 1,8 miligramos diarios y el contenido corporal total es de aproximadamente 2,6 gramos.
cinc, zinc, mineral que se encuentra en la mayoría de los alimentos, pero especialmente en la carne y las judías, y que es necesario por ser un constituyente de muchos enzimas. Se cree que también favorece la cicatrización. El adulto humano medio requiere 13 miligramos diarios y el contenido corporal total es de aproximadamente 2,3 gramos.
cobre, copper, mineral que se encuentra en la mayoría de los alimentos, pero especialmente en el hígado, los guisantes y las judias, y que es necesario en la formación de la hemoglobina y de ciertos enzimas. El adulto humano medio requiere 3,5 miligramos diarios y el contenido corporal total es de aproximadamente 0,07 gramos.
yodo, iodine, mineral que se encuentra en los alimentos de origen marino, en algunas aguas potables y en ciertas hortalizas, y que es necesario por ser un constituyente de la tiroxina. El adulto humano medio requiere 0,2 miligramos diarios y el contenido corporal total es de aproximadamente sólo 0,01 gramos.
manganeso, manganese, mineral que se encuentra en la mayoría de los alimentos, pero especialmente en el té y los cereales. Se necesita en los huesos para activar ciertos enzimas y en el metabolismo de los aminoácidos. El adulto humano medio requiere 3,7 miligramos diarios y el contenido corporal total es de sólo 0,01 gramos.
cromo, chromium, mineral que se encuentra en la carne y los cereales. cobalto, cobalt, mineral que se encuentra en la mayoría de Ics alimentos, pero especialmente en la carne y en los productos de levadura. Es un constituyente esencial de la vitamina \(\mathrm{B}_{12}\). El adulto humano medio requiere 0,3 miligramos diarios y el contenido total del cuerpo es de sólo 0,001 gramos.

\section*{Sistema Internacional de Unidades (SI)}

PREFIJOS
\begin{tabular}{|l|c|c||l|c|c|}
\hline PREFIJO & FACTOR & SIGNO & PREFIJO & FACTOR & SIGNO \\
\hline mili- & \(\times 10^{-3}\) & m & kilo- & \(\times 10^{3}\) & k \\
micro- & \(\times 10^{-6}\) & \(\mu\) & mega- & \(\times 10^{6}\) & M \\
nano- & \(\times 10^{-9}\) & n & giga- & \(\times 10^{9}\) & G \\
pico- & \(\times 10^{-12}\) & p & tera- & \(\times 10^{12}\) & T \\
\hline
\end{tabular}

UNIDADES BÁSICAS
\begin{tabular}{|l|c|l|}
\hline UNIDAD & SÍMBOLO & \multicolumn{1}{|c|}{ MEDIDA } \\
\hline metro & m & longitud \\
kilogramo & kg & masa \\
segundo & s & tiempo \\
amperio & A & corriente eléctrica \\
kelvin & K & temperatura \\
mol & mol & cantidad de una sustancia \\
\hline
\end{tabular}

UNIDADES DERIVADAS
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ UNIDAD } & SíMBOLO & \multicolumn{1}{|c|}{ MEDIDA } \\
\hline newton & N & fuerza \\
julio & J & energía, trabajo \\
hertz & Hz & frecuencia \\
pascal & Pa & presión \\
culombio & C & cantidad de carga eléctrica \\
voltio & V & potencial eléctrico \\
ohmio & \(\Omega\) & resistencia eléctrica \\
\hline
\end{tabular}
abdomen - abdomen 116
abiótico - abiotic 218
absicina - absicin 139
absorber - absorb 81
absorción activa de minerales - active mineral uptake 93
absorción pasiva de minerales - passive mineral uptake
acelomado - acoelomate 62
ceptor de electrones - electron acceptor 31 acervo genético - gene pool 213
acetilcolina - acetylcholine 152
ácido - acid 15
ácido fosfoenolpirúvico - phosphoenol pyruvic acid PEP 97
ácido fostoglicerico - phosphogliceric acid PGA 97
ácido graso - fatty acid 20
cido nucleico - nucleic acid 22
acido fostorico phosphoric acid 22
cido indol-acético - indol-acetic acid 138
ácido úrico - uric acid 134
aclimatización - acclimatization 117
actina - actin 144
actinomicete - actinomycete 43
actinomorfa - actinomorphic 181
actomiosina - actomyosin 144
acto reflejo - reflex action 152
cuático - aquatic 218
adaptación - adaptation 235
adenina - adenine 22
ADN - DNA 24
adrenalina - adrenaline 152
adyacente - adjacent 235
aéréo - aerial 218
aerobia - aerobic 32
agente mutágeno - mutagenic agent 206
agente patógeno - pathogen 43
Agnatos - Agnatha 75
agricultura - agriculture 229
ahilamiento - etiolation 142
aire - air 113
aislamiento - isolating 214
aislamiento ecológico - ecological isolation
aislamiento genético - genetic isolation 215 aislamiento reproductor - reproductive isola tion 215
aislante - isolation 237
alantoides - allantois 192
aldosterona - aldosterone 135
alelo - allele 197
alelos múltiples - multiple alleles 203
alelos letales - lethal alleles 203
lergia - allergy 234
aleta caudal -
aleta caudal - caudal fin 146
algas verdiazules - bluegreen algae 43
algología - phycology 44
alopátrico - allopatric 215
alopoliploide - alopolyploid 20
alimentación líquida - fluid feeding 108
alimentación mediante mucus - mucous fee ding 108
alimentación mediante setas - setous feeding 108
alimentación por pseudópodos - pseudopo dial feeding 108
alternancia de generaciones - alternation of generations 176
alvéolo - alveolus 116
amilasa - amylase 106
aminoácido - amino acid 21
Ameba - Amoeba 44
amoníaco - ammonia 134
amorfo - amorphus 23
amnios - amnion 191
ampolla - ampulla 160
anaerobia - anaerobic 32
análogo - analogous 211
analogo - analogous 211
androceo - androecium 181
andrógenos - androgens 195
Anélidos - Annelida 64
anemia falciforme - sicklecell anaemia 207
anemofilia - anemophily 183
aneuploidía - aneuploidy 207
anfibio - amphibious 218
Anfibios - Amphibia 77
Angiospermas - Angiospermae 57
anillo - annulus 56
anillos anuales - annual rings 172 anisogametos - a
antena - antenna 68
antera - anther 181
anteridio - antheridium 178
anterior - anterior 236
anterozoide - antherozoid 178
anticoagulante - anticoagulant 128
nicoagula antibody 233 ant 128
antígeno - antigen 234
antiséptico - antiseptic 233
Antoceradas - Anthocerotae 52
Antozoos - Anthozoa 61
anual - annual 58
anuros - anura 78
aorta - aorta 125
aparato de Golgi - Golgi body 11
aparato vestibular - vestibular apparatus 159
apareamiento de bases - base pairing 25
pice - apex 169
péndice - appendage 102
péndice articulado - jointed appendage 67 apocárpico - apocarpous 180
apodema - apodeme 145
apomixia - apomixis 175
aprendizaje por asociación - associative lear-
ning 164
aquenio - achene 185
Arácnidos - Arachnida 70
aracnoides - arachnoid mater 154
araña - spider 70
árbol - tree 59
arcilla - clay 222
articulación - articulation 236
articulación esférica - ball and socket joint'14
articulación trocoidea - pivot hinge 146
arbóreo - arboreal 218
arco reflejo - reflex arc 153
arena - sand 222
arteria - artery 127
arteria pulmonar - pulmonary artery 128
arteriola - arteriole 127
articulación - joint 146
articulación en charnela - hinge joint 146
RN - RNA 24
arquegonio - archegonium 177
arquénteron - enteron 60
Artrópodos - Arthropoda 67
asca - ascus 47
Ascomicetes - Ascomicete
ascopora - ascopore 47
séptico - aseptic 233
asimétrico - asymmetrical 60
asimilacion - assimilation 99
asociación - association 227
ATP - ATP 33
atropina - atropine 152
aumentar - increase 237
aurícula - atrium 124
autoecologia - autecology 221
autopolinización - self-pollination 183
autopoliploide - autopolyploid 207
autosomas - autosomes 20
autótrofa - autotrophic 92
auxina - auxin 13
aves - aves 7
axilar - axile 180
axilar - axile 180
axis - eje 236
axón - axon 149
azúcar - sugar 17
azúcar hexosa - hexose sugar 17
azúcar pentosa - pentose sugar 17
azúcar triosa - triose sugar 17
bacilo - bacillus 42
bacteria - bacteria 42
bacteriófaqo - bacteriophage 43
banda de Caspari - Casparian strip 122
barbilla - barb 148
base \({ }^{1}\) base 15
base \({ }^{2}\) - base 15
base pirimidica - pyrimidine base 23
base púrica - purine base 23
basidio - basidium 48
Basidiomicetes - Basidiomycetes 48
basidiospora - basidiospore 48
basófilo - basophil 91
bastón - rod 163
baya - berry 185
bentónico - benthic 227
bentonico - benthic
bienal - biennal 58
bienal - biennal 58
bilis - bile 101
biología molecular - molecular biology 17
bioma - biome 217
biomasa - biomasa 226
bioquimica - biochemistry 15
biótico - biotic 220
bivalente - bivalent 39
Bivalvos - Bivalvia 72
blastocele - blastocoel 166
blástula - blastula 166
bolas de sirena - mermaid's purse 77
bolo - bolus 99
bomba sodio-potasio - sodium pump mecha nism 150
ombeo bucal - buccal pump 114
bombeo opercular - opercular pump 114
botánica - botany 50
branquia - gill 113
Briofitas - Bryophyta 52
bronquio - bronchus 116
bronquiolo - bronchiole 116
brote - crop 110
buche - crip 109
bulbo - bulb 174
bulbo raquídeo - medulla oblogata 156
cadena alimentaria - food chain 226 cadena de polinucleótidos - polynucleotide chain 25
caducifolia - deciduous 59
caída de las hojas - leaf fall 133
alaza qualaza 180
caliptra \({ }^{1}\) - calyptra 53
caliptra \({ }^{2}\) - root cap 8
cáliz - calyx 179
caloría - calorie 97
cámara subestomática - substomal chamber 120
cambium - cambium 86
campo oral - oral groove 45
canal alimentario - alimentary canal 98 analículo + canaliculus 89
canal semicircular - semicircular canal 159 canino - canine 105
cantidad vital - vital capacity 117
capa bimolecular - bimolecular leaflet 14
capa coroide - choroid layer 160
capa de aleurona - aleurone layer 184
capa germinal - germ layer 167
capa pilifera - piliferous layer 82
capacidad pulmonar - lung capacity 117
caparazón - caparace 69
capilar - capillary 127
cápsula - capsule 53
ápsula de Bowman - Bowman' capsule 136
capullo - cocoon 6
carbohidrasa - carbohydrase 30
carbohidrato - carbohydrate 17
carbón - blight 49
carboxilasa - carboxylase 30
cariópside - caryopsis 186
carnívoro - carnovore 109
carpelo - carpel 179
cartilago - cartilage 90
cartilago hialino - hyaline cartilage 90
catalizador - catalyst 28
avidad - cavity 23
cavidad amniotica - amniotic cavity 19
cavidad bucal - buccal cavity 99
cavidad pulpar - pulp cavity 105
cavidad torácica - thoracic cavity 11
Cefalópodos - Cephalopoda 72
Celentéreos - Coelenterata 60
celoma - coelom 167
célula - cell 8
célula acompañante - companion cell 85
célula antípoda - antipodal cell 181
célula huevo - egg cell 180
célula péptica - peptic cell 100
élula somática somatic
elula hepática - liver cell 103
elula oclusiva - guard cell 120
avidad - cavity 236
célula caliciforme - goblet cell 87
celula flamigera - flame cell 62
célula germinal - germ cell 36
célula madre de la espora - spore mother cell 178
célula nerviosa - nerve cell 149
élula de Sertoli - Sertoli cell 187
lull 18
elulosa - cellulose 19
cenocitico - coenocytic 46
centrifugación - centrifugation 10
centriolo - centriole 35
centrómero - centromere 35
centro activo - active site 29
centro respiratorio - respiratory centre 117
cerebelo - cerebellum 15
erebro - brain 155
Cestodos - Cestoda 64
Chlamydomonas 50
gemmae cup 5
ciclo de Calvin - Calvin cicle 124
ciclo de carbono - carbon cycle 224
ciclo de Krebs - Kreb's cycle 34
ciclo del agua - water cycle 226
iclo del estro - oestrus cycle 193
ciclo del nitrógeno - nitrogen cycle 225
iclo del oxigeno - oxygen cycle 224
iclo menstrual - menstrual cycle 19
ciclo sexual - sexual cycle 193
ciego - caecum 102
cigomorfa - zygomorphic 181
hic 181
igoto - zygote 166
cinesis - kinesis 154
cinturón pelviano - pelvic grindle 147
cipsela - cypsela 185
circulación doble - double circulation 123 irculación pulmonar - pulmonar circulation 128
circulación sencilla - single circulation 123 circulación sistemática - systemic circulation 128
ircunvolucionado - convoluted 23
itocromo - cytochrome 31
citología - cytology 9
citoquinina - cytokinin 138
citosina - cytosine 22
clasificación - classification 40
clasificación artificial - artificial classification 41
clasificación natural - natural classification 4
leidoico - cleidoic 78
clima - climate 218
limax - climax 221
clitelo - clitellum 66
cloaca - cloaca 79
Clorofit - chlorophyll 12
Clorofitas - Chlorophyta 50
cloroplasto - chloroplast 12
clorosis - chlorosis 93
coleoptilo - Coleoptile 185
cociente respiratorio -
respiratorio - respiratory quotient
cóclea - cochlea 159
coco - coccus 42
código genético - genetic code 203
coenzima - co-enzyme 30
cofactor - cofactor 30
cola - tail 75
colénquima - collenchyma 84
coloide - colloid 22
colonización - colonization 22
colorante Gram - Gram's stain
columela - columella 53
columna geológica - geological column 212
columna vertebral - vertebral column 74
comatoso - comatose 236
comensalismo - commensalism 228
comisura - commissure 70
comparable - comparable 236
competencia - competition 220
complejo enzima-sustrato - enzyme-sustrate complex 29
componente inorgánico - inorganic compo
compon
componente orgánico - organic component
comportamiento - behaviour 164
comportamiento aprendido - learned beha viour 164
comportamiento innato - innate behaviou
164
comportamiento instintivo - instinctive beha viour 164
compuesto inorgánico - inorganic compound
compuesto orgánico - organic compound 15 comunidad - community 217
cóncavo - concave 162
concentración - concentration 236
conceptáculo - conceptacle 51
condensación - condensation 16
Condrictios - Chondrichthyes 76
condrina - chondrin 90
condroblasto - chondroblast 90
conducción - conduction 131
conducto - duct 236
conducto biliar - bile duct 101
conducto deferente - vas deferens 188
conducto de Havers - Haversian canal 89
onducto
conducto seminífero - seminiferous tubule 187
conjugación - coniugation 45
cono - estrobilo 55
cono a cone 163
conservación - conservation 230
constituyente - constituent 236
constreñir - constrict 236
consumidores - consumers 223
contraer - contract 234
control - control 235
control biológico - biological control 229
control de natalidad - birth control 232
convección - convection 131
convergente - convergent 21
convexo - convex 162
copépodo - copepod 68
coprófago - coprophagous 109
cópula - copulation 19
corazón - heart 124
Cordados - Chordata 74
cordon umbilical - umbilical cord 192
cordones tendinosos - tendinous cords 125
córnea - cornea 160
corola - corolla 179
coral - coral 61
corcho - cork 172
corion - corion 192
corpúsculo terminal - synaptic knob 152 corriente de transpiración - transpiration stream 122
corteza - bark 172
corteza cerebral - cerebral cortex 156 creación especial.
recimien - special creation 216
crecimiento - growth 165
crecimiento primario - primary growth 170
crecimiento 170
criptas de Lieberkuhn - crypts of Lieberkuhn 102
criptógramas vasculares - vascular crypto gams 54
cristalino - lens 162
cristalizar - crystallize 54
cromatina - chromatid 35
cromatografia - chromgraphy 10
cromatograma - chromatogram 10
cromosoma - chromosome 13
cromosomas homólogos - homologous chro mosomes 39
cromosomas sexuales - sex chromosomes 201
cromosomas \(X\) - X chromosomes 201 cromosomas Y - Y chromosomes 201 cronómero - chronomere 35
cruce consanguineo - inbreeding 216 cruzamiento dihibrido dihy
rid cross 199
no consanguineo - outbreeding
cruzamiento prueba - test cross 198
cuajar - Clot 129
cuello uterino - cervix 191
cuerda vocal - vocal cord 116 cuerpo - corpus 170
cuerpo carótido - carotid body 134 cuerpo basal - basal body 13
cuerpo calloso - corpus callosum 156 cuerpo celular - cell body 149 cuerpos de Nissl - Nissl's body 149 cuerpo lúteo - corpus luteum 190 cuerpo polar - polar body 189 cuerpos alados - corpora allata 165 cúpula - cupula 160
cutícula - cuticule 83
cuticula \({ }^{\text {a }}\) - cuticle 145
daltonismo - colour blindmess 201 darwinismo - Darwinism 208 débito de oxígeno - oxygen debit 117 decapodo - decapod 68
deficiencia - deficiency 236
déficit de presión de difusion - diffusion pres sure deficit \(119^{\circ}\)
dehiscencia - dehiscence 185
deleción - deletion 206
demanda de oxigeno - oxygen demand 23 dendrón - dendron 149
dentición - dentition 104
denticion heterodonta - heterodont dentition 104
dentición homodonta - homodont dentition 104
dentina - dentine 105
deriva continental - continental drift 210 deriva genética - genetic drift 214 dermis - dermis 131 desarrollo - development 236 descomponedores - decomposers 223 desencadenante - releaser 164 deshidrogenasa - dehydrogenase 30 despolarización - despolarization 15 desoxigenado - deoxygenated 126 desoxirribosa - deoxyribose 22 detritofago - deposit feeder 108 diafragma - diaphragm 116 diálisis - dialysis 10
diástole - diastole 1
dicarion - dikaryon 46
Dicotiledóneas - Dicotyledonae 57 diente - loorn 104
carnassial 105 dientes del peristoma - peristome teeth 53 ifusión - diffucion - differentiation 166
digestión - digestion 119
dilatar - dilate 236
dioico - dioecious 175
dipéptido - dipeptide 21
diploblástico - diploblastic 60
diplohaplonte - diplohaplontic 176
diploide - diploid 36
diplonte - diplontic 176
disacárido - disaccharide 18
disminuir - decrease 237
dispersión de los frutos - fruit dispersal 186
dispersión mecánica - mechanical dispersal
isper
dispersion por el agua - water dispersal 186
dispersion por el viento - wind dispersal 186
186
divergente - divergent 21
diversidad - diversity 213
división nuclear - nuclear division 35
doble hélice - double helix 25
doble fertilización - double fertilization 184
doble recesivo - double recessive 199
dominancia parcial - partial dominance 203
dominante - dominant 197
dominancia apical - apical dominance 14
dulceacuicola - fr
duocericola - freshwater 218
duplicación - duplication
duramadre - dura mater 154
drupa - drupe 185
ecdisis - ecdysis 165
ecologia - ecology 217
ecosistema - ecosystem 217
ectodermo - ectoderm 166
ectoparásito - ectoparasite 110
ectoplasma - ectoplasma 44
ecuador - equator 37
efecto Bohr - Bohr efect 127
efector - effector 153
egestión - ephemeral 58
egestion - eges
eje - axis 236
elater - elater 53
electroforesis - electrophoresis 10
electrón - electron 30
elementos principales - major elements 93 embriologia - embriology 166 embrión - embryo 166 emulsión - emulsion 26 encía - gum 105
endémica - endemic 234 endergónico - endergonic 30 endodermo - endoderm 166 endocarpo - endocarp 184 endodermis - endodermis 86 endoparásito - endoparasite 110 endoplasma - endoplasm 44 endosqueleto - endoskeleton 145 endotelio - endothelium 87 endotermo - endothermic 130 endospermo - endosperm 168 endostio - endosteum 89 enlace hidrógeno - hydrogen bond 15
enlace fosfato - phosphate bond 34
enlace peptidico - peptide bond 21 enteroquinasa - enterokinase 107 entomofilia - entomophily 184 entrenudo - internode 83
ensayo de la marca grasa - greasemark test
enzima - enzyme 28
eosinófilo - eosinophil 91
epicarpo - epicarp 184
epicotilo-epicotyl 168
epidemica - epidemic 234
epididimo epididymis 188
epifisis - epiphysis 90
epifita - epiphyte 228
epifita - epiphyte 228
epiglotis - epialottis 99
epistasia - epistasis 203
epitelio - epithelium 87
epitelio ciliado - ciliated epithelium 87 epitelio compuesto - compound epithelium 87 epitelio estratificado - stralined epithelium 88 epitelio glandular - glandular epithelium 87 epitelio de transición - transitional epithelium 88
epizoo - epizoite 228
equilibrio - balance 159
Equinodarmos Echinoder
rmata 73
equinodermos espinosos - spiny-skinned ani mal 73
Equisetales - Equisetales 55
erepsina - erepsin 107
eritrocito - erythrocyte 91
erizo de mar - sea urchin 74
erosión - erosion 222
escama - scale 76
Escamosos - Squamata 79
Escifoos - Scyphozoa 6
esclereida - sclereid 84
esclerénquima - sclerenchyma 8
esclerótica - sclerotic layer 160
escroto - scrotal sac 188
esencial - essential 236
esentinter - essenincter 236
ermalte sal muscle 127
esófago - oesophagus 9
espádice - spadix 183
espata - spathe 183
especiación - speciation 213
especie - species 40
especies amenazadas - endangered
species 230
espectro de absorción - absorption spectrum
espectro de acción - action spectrum 95
espermátide - spermatid 188
espermatocito - spermatocyte 188
Espermatofitas - Spermatophyta 57
espermatogonio spermatogonium 18
espermatozoo - spermatozoon 188
espermatozoo - spermatozoid 178
espiga - spikelet 183
espirilo - spirillum 42
espiroqueta - spirochaete 42
espora - spore 178
esporangio - sporangium 178
esporófilo - sporophyll 55
esporofito - sporophyte 177
esporogonio - sporogonium 178
esporulación - sporulation 173
esqueleto - skeleton 145
esqueleto hidrostático - hydrotatic skeleton 145
estación reproductora - breeding season 195 estado permanente - steady state 216 estáfilococo - staphylococcus 42
estambre - stamen 181
estandarte - vane 148
estatolito - statolith 140
estela - stele 86
esterigmas - sterigmata 48 esternón - sternum 149 esteroide - steroid 21
estigma - eye spot 45
estigma - stigma 181
estilo - style 181
estímulo - stimulus 151
estivación - aestivation 133
estoma - stoma 120
estómago - stomach 100
estrato - stratum 14
estrella de mar - starfish 73
estreptococo - streptococcus 42
estribo - stapes 158
estricnina - strychnine 152
estro - oestrus 194
estrobilo - strobilus 55
estrógeno - oestrogen 194
estroma - stroma 12
eteno - ethene 139
etologia - ethology 164
Euglena - Euglena 45
euploidia - euploidy 207
Euterios Euthoria 20
eutrofización - eutrophication 23
evaporación - evaporation 131
evolución - evolution 208
excreción - excretion 134
exergónico - exergonic 30
exocarpo - exocarp 184
exodermis - exodermis 86
exosqueleto - exoskeleton 145
exógeno - exogenous 172
exotermo - exothermic 130
experimento - experiment 23
expiración - expiration 112
explotación - expropecuaria - farming 229
externo - external 236
extracelular - extracellular 28
extracto - extract 236
eyaculación - ejaculation 191
facilitación - facilitation 152 factores climáticos - climatic factors 220 factores edáficos - edaphic factors 220 factor limitante - limiting factor 93 factor rhesus - rhesus factor 129 fagocitosis - phagocytosis 1 falso fruto - false fruit 186 faringe - pharinx 99
fascicular - fascicular 172 fase de hidratación - hydration phase 168 fase metabólica - metabolic phase 168 felema - phellem 172
felógeno phellogen 172
fenómeno - phellogen 172
fenotipo - phenotype 196
Feofitas - Phaephyta 51
fermentación - fermentation 34
fermentación alcohólica - alcoholic fermentation 34
fermentación del ácido láctico - lactic acid fermentation 34
ferredoxina - ferredoxim 95
fértil - fertile 175
fertilización - fertilization 175
feto - foetus 191
fibra - fibre 84
fibra - fibre 143
fibra de colágeno - collagen fibre 88
fibra elástica - elastic fibre 88
fibra muscular - muscle fibre 144
fibrilla - fibril 11
fibroblasto - fibroblast 88
Ficomicetes - Phycomicetes 46 filamento - filament 181
filamento branquial - gill filament 113 filamentos delgados - thin filaments 144 filamentos gruesos - thick filaments 144 Filicales - Filicales 56
filogenético - phylogenetic 21
filtro - filter 236
fisión binaria - binary fission 44
fisiología - physiology 81
fitocromo - phytochrom 142
fitoplancton - phytoplankton 227
flácido - flaccid 120
flagelo - flagellum 12
flavoproteina - flavoprotein 32
flexionar - flex 237
floema - phloem 84
floema secundario - secondary phloem 172
for - flower 179
florigeno - florigen 139
flujo cíclico - tidal flow 117
flujo de masas - mass flow 121
lujo genético - gene flow 21
luido - fluid 26
fluido renal - renal fluid 137
olículo \({ }^{p}\) - folicle 185
olículo de Graaf - Graafian follicle 190
olículo piloso - hair folicle 185
osil - fossil 212
fotosistema I - photosystem I 95
fotosistema II - photosystem II 95
osfolípido - phospholipid 20
fosfogliceraldehido - phosphogliceraldehyde 97
fotofosforilación cíclica - cyclic photophos phorylation 94
órmula dentaria - dental formula 104
fórmula floral - floral formula 183
fotofosforilacin cíclica - cyclic photophosphorylation 94
ototaxis - phototaxis 141
fototropismo - phototropism 140
fotofosforilación no cíclica - non-cyclic pho-
tophosphorilation 94
otonastia - photonasty 140
fotoperiodicidad - photoperiodism 142
fotorespiración - photorespiration 97
fotosíntesis - photosynthesis 93
fóvea - fovea 163
ragmentación - fragmentation 173
recuencia de sobrecruzamiento - crossover
frecuency 202
recuencia genética - gene frequency 214
fructosa - fructose 17
fruto - fruit 184
Fucus - Fucus 5
función - function 235
funículo - funicle 180
gameto - gamete 175
gametangio - gametangium 175
gametofito - gametophyte 177
ganglio - ganglion 155
gangliocerebral - cerebral ganglion 65
galactosa - galactose 18
Gasterópodos - Gastropoda 7
gastrina - gastrin 107
gástrula - gastrula 166
gastrulación - gastrulation 166
gel - gel 45
gemación - budding 173
gemas - gemmae 54
- germination 168
germinación hipogea - hypogeal germination
gen - gene 196
generación espontánea - spontaneous gene-
ration 216
género - genue 40
genética - genetics 196
genética mendeliana - Mendelian genetics 196
genoma - genome 196
genotipo - genotype 196
m 139
erminación epigea - epigeal germination 169
gestación - pregnancy 195
Gimnospermas - Gymnospermae 57
gineceo - gynoecium 179
glándula - gland 87
glándulas de Brunner - Brunner's glands 102 glándula de Cowper - Cowper's gland 189 glándula endocrina - endocrine gland 130 glándulas de la muda - ecdysial glands 165 glándula del fundus - fundis gland 100 glándula pineal - pineal body 15
glándula prostatica - prostate gland 189
glándula sudorípara - sweat gland 132
glándulas suprarrenales - adrenal glands 130
glándula venenosa - poison gland 79
glicerol - glycerol 20
glicógeno - glycogen 19
glicólisis - glycolysis 34
glóbulo blanco - white blood cell 9
glóbulo rojo - red blood cell 9
glomérulo - glomerulus 137
glucosa - glucose 17
Gnatostomos - Gnathostomata 75
gonada - gonad 187
grado tisular - tissue grade 60
grana - grana 12
gránulo - granule 45
granulocito - granulocyte 91
grasa - fat 20
grupo de ligamento - linkage group 200 grupo prostético - prosthetic group 30 grupos sanguíneos - blood groups 129
guanina - guanine 22
gutación - guttation 121
gusano plano - flatworm 62
- segmented worm 65
gusanos redondos - roundworms 64
hábitat - habitat 217
habituación - habituation 164
haploide - haploid 36
haplonte - haplontic 176
heces - faeces 99
hélice - helix 25
hemisferio cerebral - cerebral hemisphere 156
hemocele - haemocoel 68
hemocianina - haemocyanin 127
hemoglobina - haemoglobin 126
hendidura visceral - visceral cleft 74
hepáticas - hepaticae 52
herbácea - herbaceous 5
herbívoro - herbovore 109
hermafrodita - hermaphrodite 175
erbicida - herbicide 230
eredar - inherit 196
herencia dihibrida - dihybrid inheritance 199
erencia monohíbrida - monohybrid inheritan-
ce 197
ocerca - heterocercal 77
heterocigótico - heterozygous 198
heterogametos - heterogametes 175
heteróspora - heterosporous 54
heterotálica - heterothallic 47
heterótrofa - heterotrophic 92
heterosomas - heterosomes 201
hibernación - hibernation 132
híbrido - hybrid 216
hydrofito - hydrophyte 137
hidrólisis - hydrolysis 16
hidrotropismo - hydrotropism 140
Hidrozoos - Hydrozoa 61
hifa - hypha 46
hígado - liver 103
higiene - hygiene 232
hilera - spinneret 70
hipertermia - hyperthermia 133
hipertónica - hypertonic 118
hipotálamo - hypothalamus 156
hipocotilo - hypocotyl 168
hipotesis - hypothesis 235
hipótesis de la cadena transcel
llular strand hypothesis 122 - transce-
hipótesis de los filamentos deslizantes - sliding filaments hypotesis 144
hipótesis de la llave y la cerradura - lock and key hypothesis 29
hipótesis de Watson y Crick - Watson and
Crick hypothesis 25
hipótesis electrosmótica - electroosmotic hy pothesis 122
hipotónica - hypothonic 118
Hirudineos Hirudinea 86
hoja - leaf 82
holofítica - holophitic 92
Hongos - Fungi 46
Hongos imperfectos - Fungi imperfecti 49 homeotermo - homoiothermic 130
homeostasia - homeostasis 130
homocigótico - homozygous 197
homocerca - homocercal 77
homólogo - homologous 211
homóspora - homosporous 54
homotalica - homothallic
hormona antidiurética - anti-diuretic hormone 135
hormona estimulante de las células intersticiales - interstitial cell-stimulating hormo ne 195
hormona luteinizante - luteinizing hormone 194
hormona foliculoestimulante - follicle stimulating hormone 194
Stimulating hormone 194
huesecillo del oido - carcareous ossicle 73 hueso - bone 88
hueso compacto - compact bone 89
hueso esponjoso - spongy bone 90
huésped - host 111
huésped secundario - secondary host 111 huevo \({ }^{\text {p }}\) - ovum 178
numedad relativa - relative humidity 121
humor acuoso - aqueous humour 163
humor vítreo - vitreous humour 163
huso acromático - spindle 37
huso muscular - muscle spindle 145
ileo - ileum 102
imago - imago 16
implantación - implantation 191
impulso nervioso - nerve impulse 150 impregnación - imprinting
indice de ventilación - ventilation rate 1 índice metabólico - metabolic rate 32 indusio - indusium 56
infecciosa - infectious 233
inflorescencia - inflorescence 182
ingestión - ingestion 98
inhibidor - inhibitor 29
inhibición competitiva - competitive inhibition
inhibición no competitiva - non-competitive inhibition 29
inmaduro - immature 175
inmóvil - non-motile 173
inmunidad activa - active inmunity 233 inmunidad adquirida - acquired inmunity 234 inmunidad pasiva - passive inmunity 233 insectos - insecta 69
inserción - insertion 207
inspiración - inspiration 112
insulina - insulin 102
integumento - integument 180 intensidad - intensity 159 intensidad umbral - threshold intensity 151 intercambio de gases - gas exhange 112 intercelular - intercellular 111 interfase - interphase 37 interespecifico - interspecific 220 interespecifico - interspecitic
intermedio - intermediate 237 interno - internal 236
intestino delgado - small intestine 102
intracelular - intracellular 28
intraespecífica - intraspecific 220 invertebrado - invertebrate 75
inversión - inversion 206
in vitro - in vitro 28
in vivo - in vivo 28
ris - iris 162
irritabilidad - irritability 149
islotes de Langerhans - islets of Langerhans
sogametos - isogametes 175
somerasa - isomerase 30
sópodo - isopod 68
ulio - joule 97
ugo celular - cell sap 12
jugo intestinal - intestinal juice 102
jugo pancreático - pancreatic juice 102
kilojulio - kilojoule 97
Lacertilidos - Lacertilia 79
lacrosa - lactose 18
actancia - lactation 192
actasa - lactase 107
aguna - lacuna 89
lamarckismo - Lamarckism 209
lámina - lamina 82
ámina media - middle lamella 14
ámina ósea - bone lamellae 89
laminilla - lamella 12
aringe - gins 116
larva - larva 165
larva plánula - planula larva 60
larva trocófora - trochosphere larva 66
arva trocófora - trocophore larva 71
lateral - lateral 170
egumbre - legume 185
enticela - lenticel 83
leucocito - leucocyte 91
eucocito polimorfonuclear - polymorphonu-
clear leucocyte 91
eucoplasto - leucoplast 12
de la distribución independiente - law of independent assortment 200
ey de segregación - law of segregation 198 ley del todo o el nada - 'all or nothing law' 151 libre central - free central 180
Licopodiales - Lycopodiales 55
ligado al sexo - sex linked 201
ligamento - ligament 146
ligamento - linkage 200
ligamento suspensorio - suspensory ligament 162
lignina - lignin 19
línea pura - pure line 196
linfa - lymph 128
infocito - lymphocyte 91
lípido - lipid 20
líquen - lichen 49
litoral - littoral 218
ocomoción - locomotion 143
locus - gene locus 203
ombriz de tierra - earthworm 66
lubrificar - lubricate 237
luz - lumen 137
macróago - macrophagous 109 macronucleo - meganucleous 45 macronutriente - macronutrient
madreporito - madreporite 73
maduro - mature 175
mala hierba - weed 229
maltasa - mattase 10
matosa - mallose 18 - Mammalia 80
mancha ciega - blind-spot 163
mandibula - jaw 105
maniobrabilidad - manoeuvrability 75
manto - mantle 71
mapa cromosómico - chromosome map 202
marchitamiento - wilting 120
marcómero - marcomere 14
martillo - malleus 158
marino - marine 218
masa visceral - visceral hump 71
masticación - mastication
materia gris - grey matter 155
material genético - genetic material 203
matriz - matrix 88
máximo rendimiento obtenible - maximum sustainable yield 229
mecanismos de aislamiento - isolating mechanisms 213
medio - environment 218
medula - marrow 90
médula - pith 86
médula espinal - spinal cord 154 medusa - meduse 6
megaesporangio - megasporangium 178 megaesporofilo - megasporophyll 179 megafilo - megaphyll 56 megaspora - megaspore 178 meiosis - meiosis 38
mejillón - mussel 72
melanismo - melanism 214
membrana basal - basement membrane 87 membrana fetal - foetal membrane 191
membrana nuclear - nuclear membrane 13 membrana plasmática - plasma membrane 13
membrana pleural - pleural membrane 116
membrana semipermeable - semipermeable membrane 118
membrana untania - eardrum 158
meninges menin - unit membrane 14
menopausia - menopause
meristemo - meristem 169
meristemo apical - apical meristem 169
meristemo fundamental - ground meristem
170
meristemo lateral - lateral meristem 170
mesocarpo - mesocarp 184
mesodermo - mesoderm 16
mesofilo - mesophyll 86
mesofilo en empalizada - palisade mesophyll
mesofilo esponjoso - spongy mesophyll 87
mesofito - mesophyte 137
metabolito - metabolite 26
metabolismo - metabolism 26
metabolismo basal - basal metabolism 32 metafase - metaphase 3
metamorfosis - metamorphosis 70
metamorfosis completa - complete meta morphosis 165
metamorfosis incompleta - complete meta morphosis 165
Metaterios - Metatheria 80
micelio - mycelium 46
micología - mycology 46
micorriza - mycorrhiza 49
microbiología - microbiology 42
microclima - microclimate 218
microesporangio - microesrangium 178
micrófago - microphagous 108
microfilamento - microfilament 11 microfilo - microphyll 55
micronúcleo - micronucleous 45
micronutriente - micronutrient 93
micropilo - micropyle 180
microscopia - microscopy 9
microscopio - microscope 9
microscopio electrónico - electron microsco-
pe 9
microscopio óptico - optical microscope 9
microspora - microspore 178
microsporofilo - microsporophyll 178
micrótomo - microtome 9
microtúbulo - microtubule 11
mielina - myelin 150
mielina - myelin 150
milpies - milipede 69
mimetismo - mimicry 220
miocardio - myocard 143
miofibrilla - myofibril 144
miosina - myosin 144
miotomo - myotome 167
miotomo - myotome muscle 146
Miriápodos - Myriapoda 69
mitocondrias - mitochondria 11
mitosis - mitosis 37
mixobacteria - myxobacterium 42
moco - mucus 99
molar - molar 105
molar - molar 105
Moluscos - Mollusca 71
Moneros - Monera 42
Monotremas - Monotremata 80
monocito - monocyte 91
Monocotiledóneas - Monocotyledonae 58 monoico - monoecious 175 monosacárido - monosaccharide 17 morfogénesis - morphogenesis 165 morfologia - morphology 81
mortalidad diferencial - differential mortality 213
móvil - motile 173
movimiento ameboide - amoeboid movemen
movimiento ciliado - ciliate movement 45 movimientos autónomos - autonomic move ments 141
movimientos higroscópicos - hygroscopic movements 141
movimientos nasticos - nastic movements 140
uusculo - muscle 143
músculo aductor - adductor muscle 147 musculo cardíaco - cardiac muscle 143 músculo esquelético - skeletal muscle 143 músculo estriado - striated muscle 143 músculo extensor - extensor Imuscle 147 músculo flexor - flexor muscle 147
músculo involuntario - involuntary muscle 143 músculo intercostal - intercostal muscle 11 músculo liso - unstriated muscle 143 músculo miogénico - myogenic muscle 125 músculo pectoral - pectoral muscle 148 músculo protractor - protactor muscle 147 músculo retractor - retractor muscle 147 músculo rotador - rotator muscle 147 músculo voluntario - voluntary muscle 143 mutación - mutation
mutación cromosómica - chromosome mutation 206
utacion genica - gene mutation 206
mutante - mutant 206
mutualismo - mutualism 228
NAD - NAD 31
NADP - NADP 3
atacion - swimming 146
nectario - nectar 182182
nefridio - nephridium 65
nefrona - nephron 136
Nematodos - Nematoda 64
neodarwinismo - Neodarwinism 209
neotenia - neoteny 166
nervio espinal - spinal nerve 154
nervio medio - midrib 82
nervio simpatico - sympathetic nerve 125
nervio vago - vagus nerve 126
neuroglia - neuroglia 150
neurona eferente - efferent neurone 153
neurona - neurone 149
internuncial neurone 153
neurona sensora - sensory neurone 153
neutrófilo - neutrophil 91
nicho - niche 218
nivel trófico - trophic level 223
nódulo linfático - lymph node 12 noradrenalina - noradrenaline 152 no reversible - non-reversible 30 no saturado - unsaturated 20
nucela - nucellus 180
núcleo - nucleus 13
núcleo generativo - generative nucleus 18
nucleolo - nucleolus 13
nucleotidasa - nucleotidase 108
nucleótido - nucleotid 22
nudo - node 83
nudo auricoventricular - atrioventricular nod 125
nudo senoauricular - sinoatrial 125 nuez - nut 186
nutrición animal
nutriente animal - anim
observación - observation 235
Ofidios - Ophidia 79
oído - ear 157
oído \({ }^{2}\) - hearing 159
oído externo - outer ear 157
oído interno - inner ear 158
oído medio - middle ear 158 ojo - eye 160 Oigoquetos - Oligochaeta 66
oocito - ocyte 189
oogamia - oogamy 17
oogénesis - oogenesis 189
oogonio - oogonium 189
oosfera - oosphere 177
opérculo \({ }^{\text {p }}\) - operculum 53
opérculo \({ }^{\text {a }}\) - operculum 113
opistosoma - opisthosoma 70
organismo - organism 40
órgano perdurante - perennating organ 174
organogenia - organogeny 167
gannulo - organelle 8
orientacion - orientation 164
especies - origin of the species
orina - urine 135
osmoregulación - osmoregulation 133
osmosis - osmosis 118
osteíctios - osteichthyes 76
osteoblasto - osteoblast 90
osteocito - osteocyte 90
otolito - otolith 160
ovario \({ }^{\circ}\) - ovary 180
ovario a o ovary 189
oviducto - oviduct 190
óvulo \({ }^{p}\). ovule 180
oxidación -oxidation
oxidasa - oxidase 30
oxidasa - oxidase 30
oxigenado - oxygenated 126 oxitocina - oxytocin 195
pabellon auditivo - pinna 157
paleontología - paleontology 212
páncreas - pancreas 102
pancreozimina - pancreozymin 108
pandémica - pandemic 234
Pangea - Pangea 210
Paramecium - Paramecium 45
parapodio - parapodium 65
parásita - parasitic 92
parasitismo - parasitism 110
parásito - parasite 110
parásito intercelular - intercellular parasite
110
parásito intracelular - intracellular parasite
111
pared celular - cell wall 8
pared celular primaria - primary cell wall 14
pared celular secundaria - secondary cell wal 14
paramecium - paramecium 45
parenquima - parenchyma 83
parental - parental 197
partenogénesis - parthenogenesis 176
parto - parturition 192
Peces - Pisces 75
peces óseos - bony fish 76
peces teleósteos - teleost fishes 76
pecíolo - petiole 82
pectoral - pectoral 75
pedipalpos - pedipalps 70
pelágico - pelagic 227
pelicula monomolecular - monomolecular film
pelo - hair 131
pelo radical - root hair 81
pélvico - pelvic 75
pena - flight feather 148
pene - penis 189
pentadáctilo - pentadactyl 77
pepsina - pepsin 107
pepsinógeno - pepsinogen 107
peptidasa - peptidase 108
perennifolia - evergreen 59
perfil del suelo - soil profile 223
perianto - perianth 179
pericarpo - pericarp 184
periciclo - perycicle 86
periodo de gestación - gestation mperiod 192 período refractario absoluto - absolute refrac
tory period 151
período refractario - refractary period 151 período refractario relativo - relative refractory period 151
periostio - periosteum 89
peristaltismo - peristalsis 100
permeable - permeable 237
pesca - fishery 229
pesticida - pesticide 23
pétalo - petal 179
pez cartilaginoso - condrictios 76
pH - pH 15
piamadre - pia madre 154
pico - bill 80
pie \({ }^{\text {p }}\) - foot 53
pie a 0 foot 7
pie ambulacral - tube foot 73
piel - skin 131 - tube fotosynthetic pig
ment 93
pigmento - pigment 126
pinocitosis - pinocytosis 14
pionera - pioneer 22
píleo - pileus 48
pirámide ecológica - pyramid of biomass 226
pirimidina - pyrimidine 23
pituitaria - pituitary gland 157
placa cribosa - sieve plate 84
placa ecuatoral enta 180
placenta - placenta 180
placentación - placentation 180
plaga - pest 229
Planaria - Planaria 63
plancton - plankton 22
planeo - gliding 149
planta C3 - C3 plant 95
planta C4 - C4 plant 95
planta carnivora - carnivorous plant 110
planta vascular - vascular plant 50
Plantas - Plantae 50
plantas de día corto - chort day-plants 142 plantas de día largo - long day-plants 142 plantas de dia neutro - day-neutral plants 142
plaqueta - platelet 128
plasmalema - plasmalemma 14
plasmodesmos - plasmodesmata 15
plasmolisis - plasmolysis 119
plastidio - plastid 12
plastoquinona - plastoquinone 95
Platelmintos - Platyhelminthes 62
pluma - feather 147
plúmula - plumule 168
pluricelular - multicellular
población - population 214
poiquilotermo - poikilothermic 130
polarización - polarization 150
polen - pollen 181
polinización - pollination 183
polinización cruzada - cross-pollination 183 polinización por insectos - insect pollination 184
polinización por el viento - wind pollination 183
polipéptido - polypeptide 2
pólipo - polyp 61
poliploidia - polyploidy 207
Poliquetos - Polichaeta 65
polisacárido - polysaccharide 18
polisacarido -
polo - pole 37
polución - pollution 230
polución atmosférica - air pollution 232 polución de las aguas - water pollution 230 polución marina - marine porvion 232 polucion radiactiva - radioactive pollution 232 pomo - pome 120
portador - carrier 199
posterior - posterior 237
potencial de acción - action potential 150 potencial osmótico - osmotic potential 118 potencial de reposo - resting potential 150 precipitado - precipitate 26
predación - predation 220
predicción - prediction 23
premolar - premolar 10
presión atmosférica - atmospheric pressure 121
presión de turgencia - turgor pressure 119 presión radical - root pressure 121
primera generación filial \(\left(F_{1}\right)\) - first filial ( \(F_{1}\) )
primera división meiótica - first meiotic divi sion 39
primitivo - primitive 212
primordio - primordium 170
principio - principle 235
principio de Hardy-Weinberg - Hardy
Weinberg principle 214
procariota - prokaryote 8
producción estable - standing crop 226
producto - product 237
productores - producers 223
producto secundario - byproduct 237
profase - prophase 37
progenie - progeny 200
progesterona - progesterone 195
prolactina - prolactin 195
proliferación de algas - algal bloom 232 propagación vegetativa - vegetative propa gation 174
prosoma 70
proteína conjugada - conjugated protein 21
proteína fibrosa - fibrous protein 22
proteína globular - globular protein 21
Protistos - Protista 44
protoplasma - protoplasm 10
protoplasto - protoplast 11
Protozoos - Protozoa 44
protonema - protonema 53
protuberancia - protuberance 237
prueba de alcohol/agua - alcohol/water test 26
prueba de Benedict - Benedict's test 25
prueba de Biuret - Biuret test 26
prueba de rehling - Fehling's test 25 prueba de Millon - Millon's test 26 prueba del yodo - iodine test 25 prueba Sudán III - Sudan III test 26
pubertad - puberty 192
puente arterio-venoso - arterio-venous shunt vessel 128
pulmón laminar - book lung 70
pulpo - octopus 72
pulso - pulse 126
punteadora - pit 14
punto de compensación - compensation point 97
pupa - pupa 165
pupila - pupil 162
purificación del agua - water purification 230
purina - purine 23
pseudópodo - pseudopodium 44
Pteriodofitos - Pteridophyta 54
quelonios - chelonia 78
queta - chaeta 65
quilo - chyle 101
quilópodo - chilopod 69
quilla - keel 80
quiasmas - chiasmata 39
quimiosintética - chemosynthetic 92
quimo - chyme 100
quimiotaxis - chemotaxis 141
quimiotropismo - chemotropism 140
quimotripsina - chymotripsin 107
quitina - chitin 49
radiación - radiation 131
radícula - radicle 168
ádula - radula 7
aíz - root 81
aiz adventicia - adventitious root 81
aiz fibrosa - fibrous root 81
aiz pivotante - tap root 81
rango - rank 41
aquis - shaft 148
ayo medular - medullar ray 86
eactivo - reagent 26
eceptáculo - receptacle 181
recesivo - receptor 153
recombinantes - recombinants 202
recto - rectum 103
ed alimentaria - food web 226
red nerviosa - nerve net 155
educción - reduction 31
eflejo condicionado - conditioned reflex 153
efracción - refraction 162
egistro fósil - fossil regord 212
reino - kingdom 41
RE liso - smooth ER 11
Reptiles - Reptilia 78
reproducción - reproduction 173
reproducción asexual - asexual reproduction
173
eproducción sexual - sexual reproduction
RE-retículo endoplasmático 11

RE rugoso - rough ER 11
respiración - respiration 112
respiración celular - cell respiration 30
retículo endoplasmático - endoplasmic reti-
culum 11
retículo sarcoplasmático - sarcoplasmic reti
culum 145
retina - retina 160
reversible - reversible 30
ribosa - ribose
ribosa - ribose 22
ribulosa difosfato - 10
97
riñón - kidney 136
ritmo anual - annual rhythm 227
ritmo cardíaco - heartbeat 125
ritmo circadiano - circadian rhythm 226
ritmo diurno - diurnal rhythm 226
rizoide - rhizoid 52
rizoma - rhizome 17
roya - rust 49
saco aéreo - air sac 80
saco embrionario - embryo sac 180
saco polínico - pollen sac 181
sáculo - saccule 160
Salamandras - Salamanders 77
saliva - saliva 99
saprozoica - saprozoic 92
sámara - samara 186
sangre - blood 90
sanguijuela - leech 66
saturado - satured 20
seccionamiento - sectioning 9
secretina - secretin 108
sedentario - sedentary 237
segmentación - cleavage 166
segmentación metamérica - metameric seg
mentation 67 - meiotic
segunda división meiótica - second meiotic division 39
segunda generación filial \(\left(F_{2}\right)\) - second filial ( \(F_{2}\) ) 196
selección artificial - artificial selection 215 selección natural - natural selection 208
semen - semen 191
seno - sinus 127
seno carótido - carotid sinus 134
sépalo - sepal 179
septo - septum 47
serie - sere 221
seta - toadstool 48
seta \({ }^{\text {a }}\) - seta 65
seta \({ }^{\mathrm{p}}\) - seta 53
seta comestible - mushroom 48
seudocele - pseudocoel 64
sexo heterogamético - heterogametic sex 201
sexo homogamético - homogametic sex 201
sifón - siphon 72
silicua - siliqua 185
simbiosis - symbiosis 228
simetría bilateral - bilateral symetry 62
simetría radial - radial symetry 60
simetría radial de cinco radios - five-rayed ra-
dial symetry 73
simétrico - symetrical 60
simpátrico - sympatric 215
sinapsis - synapse 151
sincarpico - syncarpous 180
sinecologia - sinecology 221
singamia - syngamy 175
singamia - syngamy 175
sintetizar - synthetice 237
síntoma - sympton 234
sistema acuífero - water vascular system 73 sistema binario - binominal system 40
sistema circulatorio - circulatory system 123 sistema circulatorio abierto - open circulatory system 124
sistema circulatorio cerrado - closed circulatory system 124
sistema esquelético-muscular system 130 skeletal system 145
sistema de intercambio en corrientes paralelas - parallel current exchange system 114 sistema de intercambio a contracorriente
counter current exchange system 114
sistema de Havers - Haversian system 89
sistema nervioso - nervous system 149
sistema nervioso autónomo - autonomic nervous system 155
sistema nervioso central - central nervous system 149
sistema nervioso parasimpático - parasym pathetic nervous system 155
sistema nervioso periférico - peripheral ner
vistema system 149 mpático - sympathetic ner vous system 155
sistema portador de electrones (hidrógenos)
electron (hydrogen) carrier system 31
sistema reticuloendotelial - reticulo endothelial system 103
sistema traqueal - tracheal system 114
sistema vascular - vascular system 127 sístole - systole 124
smog - smog 232
Spirogyra - Spirogyra 51
sobrecruzamiento - crossing over 202 sobreexplotación - over explotation 230 solución isotónica - isotonic solution 118 sombrerillo - cap 40
somito - somite 167
soro - sorus 56
suberina - suberin 172 substrate - substrate 29 subterráneo - subterranean 218
sucesión - succession 221
sucrasa - sucrase 107
sucrosa - sucrose
suero - serum 90
sumación - summation 152
suspensión - suspension 26
superficie respiratoria - respiratory surface 112
supervivencia del más apto - survival of the fittest 209
sustancia blanca - white matter 155
sustancia de crecimiento - growth substance 138
sustitución - substitution 207
álamo - thalamus 157
talo - thallus 52
Talofitas - Thallophyta 50
talo estolonifero - stolon 174
tallo - stem 82
tampón - buffer 15
axia - taxis 153
axión taxic movements 14
axon - taxon 40
tectónica de placas - plate tectonics 210 tegumento germinal - testa 168
tejido - tissue 83
ejido adiposo - adipose tissue 88 tejido areolar - areolar tissue 88
ejido conjuntivo - connective tissue 88
tejido de Purkinje - Purkinje tissue 125
tejido epidérmico - epidermial tissue 83
tejido fundamental - ground tissue 83
ejido nervioso - nervous tissue 91
eiido vascular vascular tissue 83
teoria celular - cell theory 8
teoría de la cohesión - cohesion theory 122
tela de araña - web 70
elofase - telophase 37
entáculo - tentacle
endón - tendon 146
termonastia - thermonasty 14
termotaxis - thermotaxis 141
terrestre - terrestrial 218
erritorio - territory 218
estosterona - testosterone 195
etraploid etrapod 77
terminalización - terminalization 39
testículo - testis 187
tigmonastia - thigmonasty 141
figmotropismo - thigmotropism 140
imina - thymine 22
timpano (membrana timpánica) - cardrum 158 tincion - staining 9
ono - pitch 159
tonoplasto - tonoplast 1
orsion - torsion
toxina - toxin 43
traducción - translation 205
transcripción - transcription 205
transcripcion - transcription
translocación \({ }^{1}\) - translocation 122
translocación \({ }^{2}\) - translocation 106
traslúcido - translucent 26
transmisión - transmission 111
transmisión sináptica - synaptic transmission 151
ranspiración - transpiration 120
transporte activo - active transport 122
aqueida tracheid 8
raqueola - tracheole 115
ratamiento de aguas residuales - sewage
treatment 230 Trematoda 63
Trematodos - Trematod
trepadora - climber 59
triblástico - triploblastic 62
triglicérido - triglyceride 20
triploide - triploid 207
tripsina - trypsin 107
tripsinógeno - trypsinogen 107
tropismo - tropism 139
frompa de Eustaquio - Eustachian tube 159
ropomiosina - tropomyosin 144
tuberculo - tuber 174
ubo criboso - sieve tube
tubo neural - neural tube 167
ubo polínico - pollen tube 184
túbulo de Malpighi - Malpighian tubule 135
única - tunica 170
Turbelarios - Turbellaria 63
turgencia - turgor 119
turgente - turgid 119
unicelular - unicellular 9
unidad de membrana (membrana unitaria)
unit membrane 14
ultraestructura - ultrastructure 9
ultrafiltración - ultrafiltration 137
unisexual - unisexual 182
uracilo - uracil 22
urea - urea 134
uréter - ureter 135
uretra - urethra 188
utero - uterus 190
utrículo - utricle 160
vacuna - vaccine 234
vacunación - vaccination 234
vacuola - vacuole 11
vacuola alimenticia - food vacuole
vacuola contráctil - contractile vacuole 134
vagina - vagina 191
valor calorífico - cal
válvula - valve 125
válvula auriculoventricular - atrioventricular
valve 125
válvula bicúspide - bicuspid valve 125
válvulas semilunares - pocket valves 125
valvulas sigmoideas (válvulas semilunares)
pocket valves 125
válvula tricúspide - tricuspid valve 125
variación-variation 213
vaso \(^{\text {a }}\) - vessel 127
vaso \({ }^{\text {P }}\) - vessel 85
vaso linfático - lymphatic vessel 12
vector - vector 111
vejiga a - bladder 13
vejiga \({ }^{\text {P }}\) - bladder 51
vejiga natatoria - swim bladder 7
velocidad de crecimiento - growth rate 165
velocidad de transmisión - transmission
speed 15
vellosidades - villi 103
vena \({ }^{\text {a }}\) - vein 127
vena oval - fenestra ovalis 158
vena - vein 82
vena porta hepática - hepatic portal vein 103 vena pulmonar - pulmonar vein 128 entana redonda - fenestra rotunda 158
ventosa - sucker 62
ventral - ventral 75
ventrículo - ventricle 124
venula - venule 127
vernación circinada - circinate vernation 56 vernalización - vernalization 14
értebra - vertebra 147
verticado - vertebrate 74
vesícula - vesicle 12
vesícula biliar - gall bladder 101
vesícula seminal - seminal vesicle 189
vestigial - vestigial 212
via apoplástica - apoplast pathway 12 vía metabólica - metabolic pathway 26 via vacuolar - vacuolar pathway 121 vigor de los hibridos - hybrid vigour 216 virus - virus 43
visión diurna - daylight vision 163
visión nocturna - night vision 163
vitamina - vitamin 25
vitamina B - vitamin B 32
volumen de reserva - reserve volume 117
volumen residual - residual volume 117
volumen respiratorio - tidal volume 117
vuelo - flight 147
xerófito - xerophyte 137
xilema secundario - secondary xylem 172
yema - bud 83
yeyuno - jejunum 102
yunque - incus 158
zigospora - zygospore 47
zona - zone 218
zona de diferenciación - zone of differentia-
tion 170
zona de división celular - zone of cell division 170
zona de expansión - zone of expansion 170
zoología - zoology 30
zoospora - zoospore 47
abdomen - abdomen 116
abductor múscle - músculo abductor 147 abiotic - abiótico 218
absicin - absicina 139
absolute refractory period - período refractario absoluto 151
absorb - absorber 81
absorption spectrum - espectro de absorción 94
acclimatization - aclimatización 117
acetylcholine - acetilcolina 152
achene - aquenio 185
acid - ácido 15
acoelomate - acelomado 62
acquired inmunity - inmunidad adquirida 234 actin - actina 144
actinomorphic - actinomorfa 18
actinomycete - actinomicete 43
action potential - potencial de acción 150
action spectrum - espectro de acción 95
active inmunity - inmunidad activa 233
active mineral uptake - absorción activa de minerales 93
active site - centro activo 29
active transport - transporie activo 122 actomyosin - actomiosina 144
adductor muscle - músculo aductor 147
adenine - adenina 22
adipose tissue - tejido adiposo 88
adjacent - adyacente 235
ADP - ADP 33
adrenal glands - glándulas suprarrenales 130 adrenaline - adrenalina 152
adventicius root - raiz adventicia 81
aerial - aéreo 218
aerobic - aerobia 32
estivation estivacion 133
gnatha - Agnato
agriculture - agricultura 229
air - aire 113
air sac - saco aéreo 80
alcohol/water test - prueba alcohol/agua 26
alcoholic fermentation - fermentación alcohólica 35
dosterone - aldosterona 13.
aleurone layer - capa de aleurona 184
algae - algas 44
algal bloom - proliferación de algas 232 alimentary canal - canal alimentario 98
allantois - alantoides 192
allele - alelo 197
allergy - alergia 234
allopatric - alopátrico 215
allopolyploid - aloploliploide 207
all or nothing law' - ley del todo o el nada 151
alternation of generations - alternancia de ge-
neraciones 176
alveolus - alveolo
amino acid - aminoácido
amino acid - aminoácido 21
amnion - amnios 191
amniotic cavity - cavidad amniótica 191
Amoeba - Ameba 44
44 amoeboid movement - movimiento ameboide 44
amorphous - amorfo 235
Amphibia - Anfibios 77
amphibious - anfibio 218
ampulla - ampolla 160
anylase - amilasa - anaerobia
anaerobic anaerobia 32
anaphase - anafase 37
anatomy - anatomia 80
androecium - androceo 181
androgens - andrógenos 195
anemophily - anemofilia 183
aneuploidy - aneuploidia 207
Angiospermae - Angiospermas 57
animal dispersal - dispersión por los animales 186
animal nutrition - nutrición animal 97
anisogametes - anisogametos 175
anmature - inmaduro 175
Annelida - Anélidos
annual - anual 58
annual - anual 58
annual rhythm - ritmo anual 227
annulus - anillo 56
antenna - antena 68
anterior - anterior 236
anther - antera 181
antheridium - anteridio 178
antherozoid - anterozoide 178
Anthocerotae - Antoceradas 52
Anthozoa - Antozoos 6
antibiotic - antibiótico 233
antibody - anticuerpo 233
anticoagulant - anticoagulante 128
antidiuretic hormone - hormona antidiurética 135
antigen - antígeno 23
antipodal cell - célula antipoda 181
Anura - Anuros 78
anus - ano 103
aorta - aorta 125
apex - ápice 169
apical dominance - dominancia apical 141
apical meristem - meristemo apical 169
apocarpous - apocárpico 180
apodeme - apodema 145
apomixis - apomixia 175
apoplast pathway - vía apoplástica 121
appendage - apendice 67
aquatic - acuático 218
queous humour - humo
queous humour - humor acuoso 163
Arachnida - Aracnidos 70
Arachnoid mater - aracnoides 154
rchegonium - arqueg
areolar tissue - tejido areolar 8
arteriole - arteriola 127
arterio-venous shunt vessel - puente arteriovenoso 128
artery - arteria 127
Arthropoda - Artrópodos 67
articulation - articulación 236
artificial classification - clasificación artificial
41
artificial selection - selección artificial 215
Ascomycetes - Ascómicetes 47
ascopore - ascopora 47
ascus - asca 47
aseptic - aséptico 233
asexual reproduction - reproducción asexual
173.
assimilation - asimilación 99
association - asociación 227
associative learning - aprendizaje por asociación 164
symmetrical - asimétrico 60
atmospheric pressure - presión atmosférica 121
atrioventricular node - nudo auriculoventricu-
tar 125
atrioventricular valve - válvula auriculoventricular 125
atrium - auricula 124
atropine - atropina 152
autecology - autoecología 221
autonomic movements - movimientos autónomos 141
autonomic nervous system - sistema nervioso autónomo 155
autopolyploid - autopoliploide 207
autosomes - autosomas 201
autotrophic - autotrofa 92
auxin - auxina 138
Aves - Aves 79
axil - axila 83
axis - eje 236
axile - axila 180
axile - axila 180
bacillus - bacilo 42
bacteria - bacterias 42
bacteriophage - bacteriófago 43
balance - equilibrio 159
ball and socket joint
barb - barba ;48
barbule - barbilla 148
bark - corteza 172
basal body - cuerpo basal 13
basal metabolism - metabolismo basal 32
base - base \({ }^{1} 15\)
ase - base \({ }^{2} 2\)
basement membrane - membrana basal 87 ase-pairing - apareamiento de bases 25
basidiospore - basidiospora 48
basidium - basidio 48
basophil - basófilo 91
behaviour - comportamiento 164
Benedict's test - prueba de Benedict 25
benthic - bentónico 227
berry - baya 185
bicuspid valve - válvula bicúspide 125
biennal - bienal 58
bilateral symmetry - simetría bilateral 62 bile - bilis 101
bile duct - conducto biliar 101
bill - pico 80
bill - pico 80 becular leaflet - capa bi
binary fission - fisón binaria 44
binominal system - sistema binario 40
biochemistry - bioquimica 15
biological control - control biológico 229
biomass - biomasa 226
biome - biorna 217
biosphere - biosfera 217
biotic - biótico 220
birth control - control de natalidad 232
Biuret test -prueba de Biuret 26
bivalent - bivalente 39
Bivalvia - Bivalvos 72
bladder - vejiga \({ }^{p} 51\)
blastocoel - blastocele 166
blastula - blástula 166
blight - carbón 49
blind-spot - mancha ciega 163
blood - sangre 90
blood groups - grupos sanguineos 129 blue-green algae - algas verdiazules 43 BMR - IMB 32

Bohr effect - efecto Bohr 127
bolus - bolo 99
bone lamellae - lámina ósea 89
bony fish - peces óseos 76
book lung - pulmón laminar 70 botany - botánica 50 Bowman's capsule - cápsula de Bowman 136 brain - cerebro 155
breathing - respiración \({ }^{2} 112\)
breeding season - estación reproductora 19 bronchiole - bronquiolo 116
bronchus - bronquio 116
Brunner's glands - glandulas de Brunner 102 Bryophyta - Briofitas 52
buccal cavity - cavidad bucal 99
buccal pump:- bombeo bucal 114
bud - yema 83
budding - gemación 173
bulb - bulbo 174
buoyancy - flotabilidad 77
byproduct - producto secundario 237
\(\mathrm{C}_{3}\) plant - planta \(C_{3} 95\)
\(\mathrm{C}_{4}\) plant - plant \(\mathrm{C}_{4} 95\)
caecum - ciego 102
calcareous ossicle - huesecillo calcáreo 73 calorie - caloría 97 caloric value - valor calorífico 32
Calvin cycle - ciclo de
calyptra - caliptra \({ }^{1} 53\)
calyptra - caliptra
calyx - calliz 179
cambium - cambio 86
canaliculus - canalículo 89
canine - canino 105
cap - sombrerillo 48
capillary - capilar 12
capsule - cápsula 53 carapace - caparazón 69 carbohydrase - carbohidrasa 30 carbonydrate - carbonidrato 17 carboxylase carboxilasa 30 carboxylase - carboxilasa 30 cardiac muscle - músculo cardíaco carnassial - diente carnicero 105 carnivore - carnivoro 109 carnivorous plant - planta carnívora 110 carotid body - cuerpo carótido 134 carotid sinus - seno carótido 134 carpel - carpelo 179
carrier - portador 199
cartilage - cartilago 90
carth worm - lombriz de tierra 66 cartilaginous fish - pez cartilaginoso 76 caryopsis - cariópside 186
Casparian strip - banda de Caspari 122 caudal fin - catalizador 28 cavity - cavidad 236
cell - célula 8
cell body - cuerpo celular 149
cell respiration - respiración celular 30
cell sap - jugo celular 12
cell theory - teoría celular 8
cell wall pared celula
cementum - cemento 105
centipede - ciempies 69
central nervous system - sistema nervioso
central 149
centrifugation - centrifugación 10
centriole - centriolo 35
centromere - centrómero 35
Cephalopoda - Cefalópodos 72
cerebellum - cerebelo 156
cerebral cortex - corteza cerebral 156
cerebral hemisphere
isferio cerebral 156
cervx - cuello uterino 191
Cestoda - Cestodos 64
chaeta - queta 65
chalaza - calaza 180
Chelonia - Quelonios 78
chemosyntetic - quimiosintética 92
chemotaxis - quimiotaxis 141
chemotropism - quimiotropismo 140
hiasmata - quiasmas 39
chitin - quitina 49
Chlamydomonas - Chlamydomonas 50
chlorophyll - clorofila 12
Chlorophyta - Clorofitas 50
chloroplast - cloroplasto 12
chlorosis - clorosis 93
Chondrichthytes - Condrictios 76
chondrin - condrina 90
chondroblast - condroblasto 90
Chordata - Cordados 7
chorion - corion 192
choroid layer - capa coroide 160 chromatid - cromatidio 35
chromatogram - cromatograma 10
chromatography - cromatografía 10
chromomere - cromómero 35
chromosome - cromosoma 13
chromosome map - mapa cromosómico 202 chromosome mutation - mutación cromosómica 206
chyle - quilo 101
chyme - quimo 100
chymotrypsin - quimotripsina 107
ciliary body - cuerpo ciliar 162
ciliary muscles - músculos ciliares 162
ciliate movement - movimiento cila 87
ciliate movement
circadian rythm
circadian rythm - ritmo circadiano 226
circulatpry system - sistema circulatorio 123
classificaction - clasificación 40
leavage - segmentación 166
cleidoic - cledoico 78
climate - clima 218
climatic factors - factores climáticos 220
climax - climax 221
climber - trepadora 5
cloaca - cloaca 79
losed circulatory system - sistema circulato-
rio cerrado 124
clot - cuajar 129
coagulate - coagular 128
coccus - coco 42
cochlea - cóclea 159
cocoon - capullo 66
coelom - celoma 167
coenocytic - cenocítico - 46
coenzyme - coenzima
otactor - cofactor 30
ohesion theory - teoría de la cohesión 122
oll fibre fibra de
colágeno 88
colloid - coloide 22
Coelenterata - Celentéreos 60
colon - colón 103
colonization - colonización 221
colour blindness - daltonismo 201 columella - columela 53
comatose - comatoso 236
commensalism - comensalism
commissure - comisura 70
community - comunidad 217
compact bone - hueso compacto 8
companion cell - célula acompañante 85 comparable - comparable 236
compensation point - punto de compensación 97
competition - competencia 220
competitive inhibition - inhibición competitiva 29
complete metamorphosis - metamorfosis completa 165
compound epithelium - epitelio compuesto 87 concave - cóncavo 162
oncentración 236
condensation - condensación 1
condicioned reflex - reflejo condicionado 153
condrictios - pez cartilaginoso 76
conduction - conducción 131
cone a - cono 165
cone \({ }^{\mathrm{P}}\) - cono 55
conidium - conidio 47
conjugated protein - proteína conjugada 21 conjugation - conjugación 45
connective tissue - tejido conjuntivo 88
conservation - conservacion 230
constrict - constreñir
consumers - consumidores 223
contagious - contagiosa 210
ontinental drift - deriva contiental 210
contract - contraer 234
contractile vacuole - vacuola contráctil 134
control - control 235
covection - convección 131
convergent - convergente 21
onvex convo 1 d
Coorvolucionado 236
copedop - copédopo 68
coprophagous - coprófago 109
copulation - cópula 191
coral - coral 61
corion - corion 192
cork - corcho 172
corm - cormo 174
cornae - córnea 160
corolla - corola 179
corpora allata - cuerpos alados 165
orpus - cuerpo 170
corpus callosum - cuerpo calloso 156
orpus luteum - cuerpo lúteo 190
cotyledon - cotiledón 168
counter current exchange system - sistema
de intercambio a contracorriente 114
Cowper's gland - glándula de Cowper 189
cranium - cráneo 74
crayfish - cangrejo de río 69
crop - buche 110
crossing over - sobrecruzamiento 202
rossover frecuency - frecuencia de sobrecruzamiento 202
cross-pollination - polinización cruzada 183
Crustáceos 68
tieberkuhn - criptas de Lieberkun
ristallize - cristalizar 236
cupula - cúpula 160
cuticle \({ }^{\text {a }}\) - cutícula 145
cuticle \({ }^{9}\) - cutícula 83
cyclic photophosphorylation - fotofosforilación cíclica 94
ypsela - cipsela 185
cytochrome - citocromo 32
cytology - citología 9
yytoplasm - citoplasma 10
cytosine - citosina 22
Darwinism - darwinismo 208
daylight vision - visión diurna 163
day-neutral plants - plantas de día neutro 142
decapod - decápodo 68
deciduous - caducifolia 59
decomposers - descomponedores 223
decrease - disminuir 237
defaecation - defecación 99
deficiency - deficiencia 236
dehydrogenase - deshidrogenasa 30
deletion-deleción 206
DNA - ADN 24
dendron - dendron 149
dental formula - fórmula dentaria 104 dentition - dentición 104
deoxygenated - desoxigenado 126 deoxyribose - desoxirribosa 22 despolarization - despolarización 15 deposit feeder - detritófago 108 dermis - dermis 131
development - desarrollo 236
dialysis - diálisis 10
diaphragm - diafragma 116
diastole - diástole 12
Differmediation - Dicotiledóneas 5
differentiation - diferenciación 166
diffusion - difusión 119
213 mortality - mortalidad diferencial
diffusion pressure deficit - déficit de presión de difusión 119
digestion - digestión 98
dihybrid cross - cruzamiento híbrido 199
dihybrid inheritance - herencia hibrida 199
dikaryon - dicarion 46
dilate - dilatar 236
dioecious - dioico 175
dipeplastic - diplobo 21
diplohaplontic - diplohaplonte 176
diplohaplontic - diplohaplonte 176
diplontic - diplonte 176
disaccharide - disacárido 18
disease - enfermedad 233
diurnal rythm - ritmo diurno 226
divergent - divergente 211
diversity - diversidad 213
DNA - ADN 24
dominant - dominante 197
orsal - dorsal 75
double circulation - circulación doble 123
ouble fertilization - fertilización doble 184
噱
ouble recessive - recesivo doble 199
drupe - drupa 185
duct - conducto 236
duodenum - duodeno 101
duplication - duplicación 206
dura mater - duramadre 154
ar - oído 157
eardrum - membrana timpánica 158 ear ossible - huesecillo del oídu 158 and - onbriz de tierra 66 la la múda 165 caysis - ecdisis 165
cological isolation
215ical isolation - aislamiento ecológico
ecology - ecologia 217
ecosystem - ecosistema 217
ectoderm - ectodermo 166
ectoparasite - ectoparásito 110
ectoplasm - ectoplasma 44
edaphic factors - factores edáficos 220 effector - efector 153
egestion equestion 99 eferente 153
gestion - egestión 99
ejaculation - eyaculación 191
elastic fibre - fibra elástica 88
elater - elater 53
electron - electrón 30
electron acceptor - aceptor de electrones 31 electron (hydrogen) carrier system - sistema portador de electrones (hidrógenos) 31
electron microscope - microscopio electróni, co 9
electro-osmotic hypothesis - hipótesis electroosmótica 122
ectrophoresis - electroforesis 10
mbryo - embrión 166
embryo sac - saco embrionario
emulsion - emulsión 26
emulsion test - prueba de la emulsión 26 enamel - esmalte 105
endangered species - especies amenazadas 230
endemic - endémica 234
endergonic - endergónico 30
ndocarp - endocarpo 184
endocrine gland - glándula endocrina 130 endocrine system - sistema endocrino 130 endoderm - endodermo 166
endogenous - endógeno 172
endoparasite - endoparásito 110
endoplasm - endoplasma 44
endoplasmic reticulum - retículo endoplásmi-

\section*{co 11}
endoskeleton - endosqueleto 145
endosperm - endospermo 168
endosteum - endostio 89
endothelium - endotelio 87
endothermic - endotermo 130
enteron - arquenteron 60
enteron - arquenteron 60
entomophily - entomofilia 184
enzyme - enzima 28
enzyme-substrate complex - complejo enzi ma-sustrato 29
epidemic - epidémica 234
epidermal tissue - tejido epidérmico 83
epidermis - epidermis 131
epididymis - epidídimo 188
epigeal germination - germinación epigea 169
epiglotis - epiglotis 99
epiphyte - epifita 228
epistasis - epistasia 203
epizoite - epizoo 228
Equisetales - Equisetales 5
equator - ecuador 37
equilibrium - equilibrio 236
ER - ER 11
erepsin - erepsina 107
erosion - erosión 222
essential - esencial 936
ethene - eteno 139
ethology - etologia 164
etiolation - aislamiento 142
Euglena - Euglena 45
eukaryote - eucariote 9
euploidy - euploidía 207
Eustachian tube - trompa de Eustaquio 159
Eutheria - Euterios 80
eutrophication - eutroficación 23
evaporation - evaporación 13
evergreen - perennifolia 59
evolution - evolución 208
exergonic - exergónico 30
exocarp - exocarpo 184
exodermis - exodermis 8
exogenous - exógeno 172
exoskeleton - exosqueleto 145
exothermic - exotermo 130
experiment - experimento 235
expiration - expiracion 112
exploration - exploración 164
extensor muscle - músculo extensor 14
external - externo 236
extracellular - extracelular 28
extract - extra
eye spot - estigma 45
facilitation - facilitación 152
faeces - heces 99
false fruit - falso fruto 186
farming - explotación agropecuaria 229
fascicular - fascicular 172
fat - grasa 20
fatty acid - ácido graso 20
feather - pluma 147
Fehling's test - prueba de Fehling 25
enetra rotunda - ventana redonda 158
fermentation - fermentación 34
ferredoxim - ferredoxina 95
fertile - fértil 175
fertilization - fertilización 175
fibre \({ }^{\text {P }}\) - fibra 84
fibre \({ }^{\text {a }}\) - fibra 143
fibril - fibrilla 11
fibroblast - fibroblasto 88
fibrous protein - proteína fibrosa 22
fibrous root - raiz fibrosa 81
fiehery - pesca 229
filament - filamento 181
filter feeder - filtrador 108
fin - aleta 75 - filtrador 108
first filial \(\left(F_{1}\right)\) - primera generación filial \(\left(F_{1}\right)\)
196
five-rayed radial symmetry - simetría radial de
cinco radios 73
flaccid - fláccido 120
flagellum - flagelo 12
flame cell - célula flamígera 62
flatworm - gusanos planos 62
flex - flexionar 237
flexor muscle - músculo flexor 147
flight - vuelo 147
flight feather - pena 148
floral formula - fórmula floral 183
florigen - florígeno 139
flower - flor 179
foliage - follaje 59
fluid - fluido 26
fluid feeding - alimentación líquida 108
foetal membrane - membrana fetal 191
folicle \({ }^{p}\) - folículo 185
follicle-stimulating hormone - hormona folicu-
lo-estimulante 194
food chain - cadena alimentaria 226
food vacuole - vacuola alimenticia 44
food web - red alimentaria 226
foot \(^{2} 53\)
foot - pie \({ }^{\text {® }} 53\)
fossil - fósil 212
fossil record - registro fósil 212
fovea - fóvea 163
fragmentation - fragmentación 173
free central - libre central 180
reswater - dulceacuicola 218
fructose - fructosa 17
fruit - fruto 184
fruit dispersal - dispersión de los frutos 186 Fucus - Fucus 51
functio - función 235
fundis gland - glándula del fundus 100
Fungi - Hongos 46
Fungi imperfecti - Hongos imperfectos 49
funicle - funículo 180
galactose - galactosa 18
gall bladder - vesícula biliar 101
gall bladder - vesicula biliar 101
gamete - gameto 175
gametophyte - gametof
ganglion - ganglio 155
gas exchange - intercambio de gases 112
gastrin - gastrina 107
Gastropoda - Gasterópodos 7
gastrula - gástrula 166
gastrulation - gastrulación 166
gel - gel 45
gemmae - gemas 54
gemmae cup -
gene gen - 196 ciatlo 54
gene flow - flujo genético 214
gen frequency - frecuencia genética 214
gene locus - locus 203
gene mutation - mutación génica 2:06
gene pool - acervo genético 213
generation - generación 176
generative nucleus - núcleo generativo 18
genetic code - código genético 203
genetic drift - deriva genetica 214
genetic isolation aislamiento genético 215
genelic isolanética 196
genetics - genetica 196
genotype - genotipo 196
genus - género 40
geological column - columna geológica 212
geotropism - geotropismo 139
germ cell - célula germinal 36
germination - germinación 167
germ layer - capa germinal 167
gestation period - período de gestación 192
gill - branquia 113
gll
gills - laminillas 49
gili sita - hendidura branquial 113
gland - glándula 87
glandular epithelium - epitelio glandular 87
gliding - planeo 149
globular protein - proteína globular 2
glomerulus - glomérulo 137
glucose - glucosa 17
glycerol - glicerol 20
glycogen - glicógeno 19
glycolysis - glicolisis 34
Gnasthostomata - Gnatóstomos 75
Gobet cell - celula calciforme 87
gonad - gonada 187
Graafian follicle - folículo de Graaf 190
gradient - gradiente 237
Gram's stain - colorante Gram 42
grana - grana 12
granule - gránulo 45
granulocyte - granulocito 91
greasemark test - ensayo de la marca grasa 26
grey mater - materia gris 155
ground meristem - meristemo fundamental 170
ground tissue - tejido fundamental 83
growth - crecimiento 165
growth rate - velocidad de crecimiento 165
growth substance - sustancia de crecimiento
138
guanine - guanina 22
guard cell - célula oclusiva 120
gum - encía 105
gut - tubo digestivo 98
Gymnospermae - Gimnospermas 57
gynoecium - gineceo 179
habitat - habitat 217
habituation - habituación 164
haemocoel - hemocele 68
haemocyanin - hemocianina 127 haemoglobin - hemoglobina 126 haemophilia - hemofilia 202 hair - pelo 131
hair follicle - folículo piloso 132
haploid - haploide 36
Hardy-Weinberg principle - principio de Har
dy-Weinberg 214
Haversian canal - conducto de Havers 89 Haversian system - sistema de Havers 89 hearing - oído \({ }^{2} 159\)
heart - corazón 124
heartbeat - ritmo cardíaco 125
helix - hélice 25
Hepaticae - Hepáticas 52
hepatic portal vein - vena porta hepática 103
herbaceous - herbacea 59
herbicide - herbiciaa 230
hermaphrodite - hermafrodita 175
heterocercal - heterocerca 77
heterodont dentition - dentition heterodonta 104
heterogametes - heterogametos 175
heterogametic sex - sexo heterogamético 201
heterosporous - heteróspora
heterothallic - heterotálica 47
heterotrophic - heterótrofa 92
heterosomes - heterosomas 201
heterozygous - heterocigótico 198
hexose sugar - azúcar hexosa '17
hexose sugar - azucar hexosa
hibernation - hibernación 132
hipotonic - hipotónica 118
hinge ioint - articulación en charnela 146
Hirudinea - Hirudíneos 66
histology - histología 80
holophitic - holofitica 92
holozoic - holozoico 92
homeostasis - homeostasis 130
homoiothermic - homeotermo 130
homocercal - homocerca 77
homodont dentition - dentición homodonta 104
homogametic sex - sexo homogamético 201 homologous - homólogo 211
homologous chromosomes - cromosomas ho mólogos 39
homosporous - homóspora 54
homothallic - homotálica 47
homozygous - homocigótico 197
hormone - hormona 130
host - huesped 111
humus - humus 222
hyaline cartilage - cartilago hialino 90
hybrid - hibrido 216
hybrid vigour - vigor de los hibridos 216
ydrogen bond - enlace hidrógeno 15
hydrolase - hidrolasa 30
hydrolysis - hidrólisis 16
hydrophyte - hidrófito 137
hydrostatic skeleton - esqueleto hidrostático 145
hydrotropism - hidrotropismo 140
Hydrozoa - Hidrozoos 6
hygiene - higiene 232
yygroscopic movements - movimientos higroscopicos 141
hyperthermia - hipertemia 133
hypha - hifa 46
hypocotyl - hipocotilo 168
hypogeal germination - germinación hipogea 169
hypothalamus - hipotálamo 156
hypothermia - hipotermia 133
ileum - íleo 102
mago - imago 165
cruce consanguíneo 216
mplantation - implantación 191
incisor - incisivo 104
incomplete metamorphosis - metamorfosis in-
completa 165
increase - aumentar 23
incus - yunque 158
indol-acetic acid - ácido indol-acético 138
indusium - indusio 56
infectious - infecciosa 233
inflorescence - inflorescencia 182
ingestion - ingestion 98
nenit - heredar 196
inmunity - inmunidad 233
innate behaviour - comportamiento innato 164 inner ear - oído interno 158
inorganic component - componente inorgáni-
co 222
inorganic compound - compuesto inorgánico 15
insecta - insectos 69
insect pollination - polinización por insectos 184
insertion - inserción 207
inspiration - inspiración 112 mortamiento ins tintivo 164
insulin - insulina 102
integument - integumento 180
intensity - intensidad 159
intercellular - intercelular 11
intercellular parasite - parasito intercelula
110
intercostal muscle - músculo intercostal 116
interfascicular - interfascicular 172
intermediate - intermedio 237
neurona intermedia
153
internode - entrenudo 83
interphase - interfase 37
interspecific - interespecífico 220
interstitial cell-stimulating hormone - hormona
estimulante de las células intersticiales 195
intestinal juice - jugo intestinal 102
intracellular parasite - parásito intracelular
111
intraspecific - intraespecifica 220
inversion - inversión 206
invertebrate - invertebrado 75
in vitro - in vitro 28
nvoluntary muscle - músculo involuntario 143
iodine test - prueba del yodo 25
ris - iris 162
irritability - irritabilidad 149
islets of Langerhans - islotes de Langerhans 102
sogametes -. isogametos 175
solating - aislamiento 214
solating mechanisms - mecanismo de aisla
miento 213
isolation - aislante 237
isomerase - isomerasa 30
isopod - isópodo 68
sotonic solution - solución isotónica 118
jaw - mandibula 105
jejunum - yeyuno 102
oint - articulación 146
ointed appendage - apéndice articulado 67 joule - julio 97
keel - quilla 80
kidney - riñón 136
kilojoule - kilojoule 97
kinesis - cinesis 154
kingdom - reino 41

Lacertilia - Lacertílidos 79
lactase - lactasa 107
actation - lactancia 192 fermentación del
ácido láctico 34
lactose - lactosa 18
lacuna - laguna 89
Lamarckism - lamarkismo 209
lamella - laminilla 12
lamina - lámina 82
larva - larva 165
larynx - laringe 116
lateral - lateral 170
lateral meristem - meristemo lateral 170
law of independent assortment - ley de la distribución independiente 200
law of segregation - ley de segregación 198 leaf - hoja 82
leaf fall-caida de las hojas 133
leamed behaviour - comportamiento aprend do 164
leech - sanguijuela 66
legume - legumbre 18
lenticel - lenticela 83
lethal alleles - alelos letales 203
leucocyte - leucocito 91
leucoplast - leucoplasto 12
lichen - liquen 49
ligament - ligamento 146
lignin - lignina 19
limb - miembro 147
limiting factor - factor limitante 93
linkage - ligamento 200
lipase - lipasa 107
lipid - lípido 20
littoral - litoral 218
liver-hígado 103
liver cell - céluta hepática 103
lock and key hypothesis - hipótesis de la llave y la cerradura 29

ong-day-plants - plantas de dia largo 142 onkage group - grupo de ligamento 200 oop of Henle - asa de Henle 136
lumen - luz 137
lung capacity - capacidad pulmonar 117
ungs - pulmones 115
uteinizig hormone - hormona luteinizante 194
ycopodiales - Licopodiales 55
ymph - linfa 128
ymphatic vessel - vaso linfático 128
ymph node - nódulo linfático 128
ymphocyte - linfocito 91
macronutrient - macronutriente 93
macrophage - macrófago 88
madreporite - madreporito 73
major plements -
major elements elimentos principales 93
maleus - martillo 158
Malpignian tubule - túbulo de Malpighi 135
maltose - maltosa 18
Mammalia - Mamíferos 80
manoeuvrability - maniobrabilidad 75
mantle - manto 71
marcomere - marcómero 144
marine - marino 218
marrow - médula 90
mass flow - fujo de masas 121
mast cell - mastocito 88
mastication - masticación 104
matrix - matriz 88
mature - maduro 175
maximum sustainable yield - máximo rendimiento obtenible 229
mechanical dispersal - dispersión mecánica 186
medulla oblogata - bulbo raquídeo 156
medullar ray - rayo medular 86
meduse - medusa 61
meganucleus - macronúcleo 45
megaphyll - megafilo 56
megasporangium - megaesporangio 178
megaspore - megaspora 178
megasporophyll - megasporofilo 179
meiosis - meiosis 38
melanism - melanismo 214
membrana timpánica - timpano 158
membrana unitaria - unidad de membrana 14
mendelian genetics - genética mendeliana menin
meninges - meninges 154
menopause - menopausia 192
menstrual cicle - ciclo menstrual 194
meristem - meristemo 169
mermaid's purse - bolas de sirena 77 mesocarp - mesocarpo 184 mesoderm - mesodermo 167 mesophyl - mesofilo 86 mesophyte - mesófito 137 metabolic pathway - vía metabólica 26 metabolic phase - fase metabólica 168 metabolic rate - indice metabólico 32 metabolism - metabolismo 26 metabolite - metabolito
metameric segmentation - segmentación memetamorphosis
metamorphosis - metamorfosis 70
metaphase - metafase 37
Metazoa - Metazoos 60
microbiology - microbiología 42
microclimate - microclima 218
microfilament - microfilamento 11 microhabitat - microhábitat 217 micronucleus - micronúcleo 45 micronutrient - micronutriente 93 microphagous - micrófago 108 microphyll - micrófilo 55 micropyle - micropilo 180 microtome - micrótomo 9 microvilii - microvellosidades 13 microscopy - microscopia microspore - microspora 178 microsporophyll - microsporofilo 178 microtubule , microtúbulo 11
middle lamella - lámina media
middle ear - oído medio 158
midrib - nervio medio 82
meiotic division - primera división meiótica 39 milipede - milpiés 69
Millon's test - prueba de Millon 26
mimicry - mimetismo 220
mitochondria - mitocondrías 11
mitosis - mitosis 37
molecular biology - biología molepular 17 Mollusca - Moluscos 71
Monera - Moneros 42
monocelular film - película monocelular 14 Monocotyledonae - Monocotiledóneas 58
monoecious - monoico 175
monohybrid inheritance - herencia monohibri da 197
monosaccharide - monosacárido
Monotremata - Monotremas 80
monozygous - homocigótico 197
morphogenesis - morfogénesis 165
morphology - morfologia 81
motile - móvil 173
mucous feeding - alimentación mediante mucus 108
mucus - moco 99
multicellular - pluricelular 9
multiple alleles - alelos múltiples 203
Musci - Musgos 52
muscle fibre - fibra muscular 144
muscle-skeletal system - sistema esquelético
muscular 145
muscle spindle - huso muscular 145
mushroom - seta comestible 48
mussel - mejillón 72
mutagenic agent - agente mutágeno 206
mutant - mutante 206
mutation - mutación 206
mutualism - mutualismo 228
mycelium - micelio 46
mycology - micologia 46
mycorrhiza - micorriza 49
myelin - mielina 150
myocard - miocardio 143
myofibril - miofibrilla 144
myogenic muscle - músculo miogénico 125
myosin - miosina 144
myotome - miotomo 167
myotome muscle - musculo miotomo 146
Myriapoda - Miriápodos 69
myxobacterium - mixobacteria 4
NAD - NAD 31
NADP - NADP 31
nastic movements - movimientos násticos
140
natural classification - clasificación natural 41 natural selection - selección natural 208
nectar - néctar 182
nectary - nectario 182
Nematoda - Nematodos 64
neodarwinism - neodaiwinismo 209
neoteny - neotenia 166
nephridium - nefridio 6
nerve cell - célula nervo
rviosa 149
nerve impulse - impulso nervioso 150
nerve net - red nerviosa 155
nervous system - sistema nervioso 149
nervous tissue - tejido nervioso 91
neural tube - tubo neural 167
neuroglia - neuroglia 150
neurone - neurona 149
neutrophil - neutrófilo 91
niche - nicho 218
ight vision - visión nocturna 163
issl's granules - cuerpos de Nissl 149
nitrogen cycle - ciclo del nitrógeno 225
nymph - ninfa 165
non-competitive
n-competitive inhibition - inhibición no
non-cyclic photophosphorilation - fotofosforilación no cíclica 94
non-motile - inmóvil 173
non-reversible - no reversible 30
noradrenaline - noradrenalina 152
notochord - notocorda 167
nucellus - nucela 180
nuclear division - división nuclear 35
nuclear membrane - membrana nuclear 13
nucleid acid - ácido nucleico 22
nucleolus - nucleolo 13
ncleus - núcleo 13
nucleorid - nucleotido 22
ucleotidase - nucleotidasa 108
nut-nuez 186
nutrition - nutrición 92
observation - observación 235
octopus - pulpo 72
oesophagus - esófago 99
estrogen - estrógeno 194
oestrus - estro 194
estrus cicle - ciclo del éstro 193
offspring - descendencia 237
oil - aceite 20
Oligochaeta - Oligoquetos 66
omnivore - omnivoro 109
oocyte - oocito 189
ogamy - oogamia 175
ogenium - oogenesis 189
osphere - oosfera 177
open circulatory system - sistema circulatorio
abierto 124
opercular pump - bombeo opercular 114
operculum \({ }^{\text {a }}\) - opérculo 113
operculum \({ }^{\mathrm{P}}\) - opérculo 53
Ophidia - Ofidios 79
opisthosoma - opistosoma 70
optical microscope - microscopio óptico 9
organelle - orgánulo 8
organic component - componente orgánico 222
organic compound - compuesto orgánico 15
organism - organismo 40
organogeny - organogenia 16
orgasm - orgasmo 191
oral groove - campo oral 45
orientation - orientación 164
origin of the species - origen de las especies 209
osmoregulation - osmorregulación 133
osmosis - ósmosis 118
osmotic potential - potencial osmótico 118
osteoblast - osteoblasto 90
osteocyte - osteocito 90
otolith - otolito 160
outbreeding - cruzamiento no consanguíneo
ovary - ovario \({ }^{\text {p }} 180\)
ovary - ovario \({ }^{\text {a }} 89\)
over-explotation - sobreexplotación 230
oviduct - oviducto 190
ovulation - ovulación 194
ovule - óvulop 80
ovum - huevo a 190
outer ear - oído externo 1
outer ear - oido externo
oxidation - oxidación 32
oxidase - oxidasa 30
oxidate phosphorylation - fosforilación oxida
tiva 34 - ciclo del oxigeno 224
oxygen cycle - ciclo del oxigeno 224
oxygen debt - débito de oxigeno 117
oxygen demand - demanda de oxigeno 231
oxyhaemoglobin - oxihemoglobina 126
oxygenated - oxigenado 126
oxyntic cell - célula oxíntica 100
oxytocin - oxitocina 195
paleontology - paleontologia 212
palisade mesophyl - mesofilo en empalizada 87
pancreas - páncreas 102
pancreatic juice - jugo pancreático 102 pancreozymin - pancreozimina 108
pandemic - pandémica 234
Pangea - Pangea 210
parallel - paralelo 237
parallel current exchange system - sistema de intercambio en corrientes paralelas 114
Paramecium - Paramecium 45
parapodium - parapodio 65
parasite - parásito 110
parasitic - parásita 92
parasitism - parasitismo 110
parasympathetic nervous system - sistema
nervioso parasimpático 155
parenchyma - parénquima 83
parental - parental 197
parthenogenesis - partenogénesis 176
partial dominances - dominancia parcial 203 parturition - parto 192 . assive mineral uptake minerales 93
passive inmunity - inmunidad pasiva 233
pathogen - agente patogeno 43
pectoral - pectoral 75
pectoral muscle - músculo pectoral 148 pedipalps - pedipalpos 70
pelagic - pelágico 227
pelvic - pelvico 75
pelvis grindle - cinturón pelviano 147
penis - pene 189
pentadactyl - pentadáctilo 77
pentose sugar - azúcar pentosa 17
pepsinogen - pepsinógeno 107
peptic cell - célula péptica 100
peptidase - peptidasa 10
peptide bond - enlace peptidico 21
perennating organ - órgano perdurante 174
perennial - perenne 58
perianth - perianto 179
pericarp - pericarpo 184
periosteum - periostio 89
peripheral nervous system - sistema nervioso periférico 149
peristome teth -alismo 100
peristome teeth - dientes del peristoma 53
perycicle - periciclo 86
pest - plaga 229
pesticide - pesticida 230
petal - pétalo 179
petiole - pecíolo 82
pia mater - piamadre 154
pico - bill 80
pigment - pigmento 126
pileus - pileo 48
piliferous layer - capa pilifera 82
pineal body - glándula pineal 157
pinna - pabellón auditivo 157
pinocytosis - pinocitosis
piruvic acid - ácido
diruvic acid - ácido pirúvico 34
pit - punteadura 14
pith - médula 86
pitch - tono 159
pituitary gland - glándula pituitaria 157 pivot hinge - articulación trocoidea 146 pH - pH 15
Phaeophyta - Feofitas 51
phagocytosis - fagocitosis 14
pharinx - faringe 99
phellem - felema 172
phelloderm - felodermo 172
phellogen - felógeno 172
phenomenon - fenómeno 235
phenotype - fenotipo 196 phynomicetes - finomicetes 46
physiology - fisiologia 81
phytoplankton - fitoplancton
phosphate bond - enlace fosfato photorespiration - totorrespiración 97 photosystem II - fotosistema I/ 95
photosynthetic pigment - pigmento fotosinteti-
phototaxis - fototaxis 14
phlcem - floema 84
phosphoenol pyruvic acid PEP - ácido fosfoenolpirúvico 97
phosphogliceraldehyde - fosfogliceraldehído 37
phosp
phosphogliceric acid PGA - ácido fosfoglicé phospholip
phospholipid - fosfolipido 20
ohosphoric acid - ácido fosfórico 22
photosyntesis - fotosintesis 93
photoperiodism - fotoperiodicidad 142
photosystem I-fotosistema / 95
phototropism - fototropismo 140
Phynomicetes - Finomicetes 46
phytochrom - fitocromo 142
placenta - placenta \({ }^{\text {P }} 180\)
placenta - placenta \({ }^{\text {a }} 192\)
placentation - placentación 180
Planaria - Planaria 63
planula larva - larva plánula 60
plankton - placton 227
plasma - plasma 90
plasmalemma - plasmalema 14
plasma membrane - membrana plasmática 13
plasmodesmata - plasmodesmos 15
plasmolysis - plasmolisis 119
plastid - plastidio 12
plastoquinone - plastoquinona 95
plate tectonics - tectónica de placas 210
platelet - plaqueta 128
Platyhelminthes - Platelmintos 62
pleural cavity - cavidad pleural 116
pleural membrane - membrana pleural 116
lymorphonuclear leucocyte - leucocito poli-
morlonuclear 91
pocket valves - válvulas semilunares 125
poikilothermic - poiquilotermo 130
poison gland - glándula venenosa 79
polar nuclei - núcleos polar 189
polarization - polarización 150
pole - polo 37
pollen - polen 181
pollen sac - saco polínico 181
pollen tube - tubo polínico 184
pollination - polinización 183
pollution - polución 230
Polychaeta - Poliquetos 65
polynucleotide chain - cadena de polinucleó tidos 25
polyp - polipo 61
polypeptide - polipéptido 21
polysaccharide - polisacárid
polysaccharide - polisacárido 18
population - población 214
pore - poro 120
posterior - posterior 237 precipitate - precipitado 26 predation - predación 220 prediction - predicción 235 pregnancy - gestación 195 premolar - premolar 105 primary cell wall - pared celular primaria 14 primary growth - crecimiento primario 170
primitive - primitivo 212
principle - principio 235
proboscis - probóscide 70
producers - productores 223
product - producto 237
progeny - progenie 200
progesterone - progesterona 195
prokaryote - procariota 8
prolactin - prolactina 195
prophase - profase 37
prosoma - prosoma 70
prostate gland - glándula prostática 189
prosthetic group - grupo prostético 30
Protista - Protistos 44
protonema - protonema 53
protoplasm - protoplasma 10
protoplast - protoplasto 11
Protozoa - Protozoos 44
protractor muscle - músculo protactor 147
protuberance - protuberancia 237
pseudocoel - seudocele 64
pseudopodial feeding - alimentación por pseudópodos 108
pseudopodium - pseudópodo 44
Pteridofyta - Pteridofitos 54
puberty - pubertad 192
pulmonar circulation - circulación pulmonar 128
pulmonar vein - vena pulmonar 128 pulmonary artery - arteria pulmonar 128 pulp cavity - cavidad pulpar 105
pulse - pulso 126
pupa - pupa 165
pure line - linea pura 196
purine - purina 23
Purkinje tissue - tejido de Purkinje 125
purine base - base púrica 23
phycology - algología 44
pyramid of biomass - pirámide ecológica 226
pyrimidine - pirimidina 23
pyrimidine base - base pirimídica 23
quill - cálamo 148
radial symmetry - simetría radial 50
radicle - radícula 168
radioactive pollution - polución radiactiva 232
radioactive pollution - polución radiactiva 232
rank - rango 41
eagent - reactivo 26
eceptacle - receptáculo 181
eceptor - receptor 153
recombinants - recombinantes 202
recombinants - reco
red blood cell - glóbulo rojo 91
reduction - reducción 32
RE - retículo endoplásmico 11
reflex action - acto reflejo 152
reflex arc - arco reflejo 153
refraction - refracción 162
refractory period - período refractario 15
rhesus factor-factor rhesus 129
relative humidity - humedad relativa 121
relative refractory period - período refractario relativo 151
releaser - desencadenante 164
RNA - ARN 24
renal fluid - fluido renal 137
rennin - renina 106
producción 173
tor 215 isolation - aislamiento reproduc-
or 215
epilia - Reptiles 78
respiratory centre - centro respiratorio 117
respiratory quotient - cociente respiratorio

\section*{112}
respiratory surface - superficie respiratoria 112
reserve volume - volumen de reserva 117
residual volume - volumen residual 117
resting potential - potencial de reposo 150
reticulo-endothelial system - sistema reticu-
retina - retina 160
retractor muscle - músculo retractor 147
reversible - reversible 30
rhizoid - rizoide 52
rhizome - rizoma 174
ribose - ribosa 22
ribosome - ribosoma 10
rickettsia - rickettsia 42
ribulose diphosphate - ribulosa difosfato 97 rod - bastón 163
root cap - caliptra \({ }^{2} 81\)
root hair - pelo radical 8
root pressure - presión radical 121
root - raiz 81
root - raiz 81
rotator muscle - músculo rotador 147
rough ER - RE rugoso 11
roundworms - gusanos redondos 64
runner - estolón 174
rust - roya 49
saccule - sáculo 160
Salamanders - Salamandras 77
saliva - saliva 99
samara - sámara 186
sand - arena 222
saprozoic - saprozoica 92
sarcoplasmic reticulum - retículo sarcoplásmico 145
saturated-saturado 20
scale - escama 76
scale - escama 76
scientific method - método cientifico 235
sclereid - esclereida 84
sclerenchyma - esclerénquima 84
sclerotic layer - esclerótica 160
Scyphozoa - Escifoos
sea urchin - erizo de mar 7
sevaceous gland - glándula sebácea 131
sectioning - seccionamiento 9
second filial \(\left(F_{2}\right)\) - segunda generación filial
( \(F_{2}\) ) 196
second mieotic division - segunda división meiótica 39

\section*{secondary cell wall - pared celular secundaria} 14
secondary growth - crecimiento secundario 170
secondary host - huesped secundario 111 secondary phloem - floema secundario 172 econdary tissue - tejido secundario 86
ecretin - secretina 108 secretin - secretina 108
sedentary - sesendario 237
seed - semilla 184
segmented worm - gusano segmentado 65 self-pollination - autopolinación 183
semen = semen 191
semicircular canal - canal semicircular 159 seminal vesicle - vesícula seminal 189
seminiferous tubule - conducto seminifero 187
semipermeable membrane - membrana semipermeable 118
sensory neurone - neurona sensora 153
septum - septo 47
sere - serie 221
Sertoli cell - célula de Sertoli 187
serum - suero 90
seta - seta \({ }^{\text {P }} 53\)
seta - seta \({ }^{\text {a }} 65\)
setous feeding - alimentación mediante setas 108
sewage treatment - tratamiento de aguas re siduales 230
sex-linked - ligado al sexo 201
sex chromosomes - cromosomas sexuales 201
sexual cicle - ciclo sexual 193
sexual reproduction - reproducción sexual shaft
shaft - raquis 148
shoot - brote 83
short-day-plants - plantas de día corto 142 shrub - arbusto 59
sickle-cell anaemia - anemia falciforme 207
sieve plate - placa cribosa 84
sieve tube - tubo criboso 84
silicula - silícula 185
siliqua - silicua 185
simpathetic nerve - nervio simpático 125
sinecology - sinecologia 221
single circulation - Circulación sencilla 123
andor senoauricular 125
sinus - seno 121
siphon - sifón 72
scutellum - escutelo 185
skeletal muscle - músculo esquelético 143 skeleton - esqueleto 145
skin - piel 131
sliding filaments hypothesis - hipótesis de los
filamentos deslizantes 144
slime mould - mohos mucosos 49
small intestine - intestino delgado 102
smog - smog 232
smooth ER - RE liso 1
sodium pump
potasio 150 mechanism - bomba sodio
soil - suelo 222
soil profile - perfil del suelo 223
solution - solución 118
somatic cell - célula somática 36
somite - somito 167
sorus - soro 56
spadix - espádice 183
spathe - espata 183
special creation - creación especial 216
speciation - especiación 213
species - especie 40
spermatid - espermátide 188
Spermatocyte - espermatocito 188
spermatogenesis - espermatogénesis 187 spermatogonium - espermagonis 188 spermatozoid - espermatozoide 178 spermatozoon - espermatozoo 188 sphincter muscle - esfinter 127
spider - araña 70
spikelet - espiga 183
spinal cord - médula espinal 154 spinal nerve - nervio espinal 154 spindle - huso acromático 37
spinneret - hilera 70
spiracle - espiráculo 114
spirillum - espirilo 42
spirochaete - espiroqueta 42
spiny-skinned animal - equinodermos espino sos 73
Spirogyra - Spirogyra 51
spongy bone - hueso esponjoso 90
spongy mesophyl - mesofilo esponjoso 87
spontaneous generation - generación espon-
tánea 216
sporangium - esporangio 178
spore - espora 178
spore mother cell - célula madre de la espora
sporogonium - esporogonio 178
sporophyll - esporófilo 55
sporophyte - esporofito 177
sporulation - esporulación 173
Squamata - Escamosos 79
stading crop - producción estable 226
staining - tincion 9
stapes - estribo 158
staphylococcus - es
tarch estafilococo 42
starfish - estrella
statolit - estatolito 140
steady state - estado permanente 216
stele - estela 86
stem - tallo 82
sterigmata - esterigmas 48
steroid - esteroide 21
sternum - esternón 149
stigma - estigma 181
stoma - estoma 120
stomach - estómago
stratified epithelium 100 pitelio estratificado
stratum - strato 14
streptococcus - estreplococo muscle - músculo estriado 143
strobilus - estróbilo 55
stroma - estroma 12
structure - estructura 235
strychinine - estricnina 15
suberin - suberina 172
substomal chamber - cámara subestomática
120
substrate - substrato 29
subterranean - subterráneo 218
succession - sucesión 221
sucker - ventosa 62
sucrase - sucrasa 107
sucrose - sucrosa 18
Sudan III test - prueba Sudán III 26
sugar - azúcar 17
summation - sumación 152
survival of the fittest - supervivencia del más
apto 209
suspension - suspensión 26
suspensory ligament - ligamento suspensorio 162
stolon - tallo estolonífero 174
style - estilo 181
symbiosis - simbiosis 228
sympathetic nervous system - sistema nervio
so simpático 155
sympatric - sumpátrico 215
symplast pathway - vía simplástica 12
sympton - sintoma 234
syncarpous - sincárpico 180
synapse - sinapsis 151
synaptic knob - corpúsculo terminal 152
synaptic transmission - transmisión sináptica
synergid - sinergida 181
syngamy - singamia 175
synthetice - sintetizar 237
systemic circulation - circulación sistemática 128
ystole - sistole 124
sweat gland - glándula sudoripara 132 wim bladder - vejiga natatoria 77
swimming - natación 146
tail - cola 75
ap root - raiz pivotante 81
apetal cell - célula del tapete 18
axic movements - taxias 141
taxis - taxia 153
axon - taxon 40
taxonomy - taxonomía 40
eleost fishes - peces teleósteos 76
elophase - telofase 3
ndous tendón 146 cordones tendinosos 125 nsile - extonsible 143
tentacle - tentáculo 71
erminalization - terminalización 39
terrestrial - terrestre 218
errestrial pollution - polución terrestre 232 erritory - territorio 218
esta - tegumento germinal 168
est cross - cruzamiento prueba 198
estis - testiculo 187
stosterone - testosterona 19
heory - teoría 235
heory - teoria 235
thalamus - tálamo 157
Thallophyta - Talofitas 50
thallus - talo 52
thermonasty - termonastia 14
hermotaxis - termotaxis 141
thick filaments - filamentos gruesos 144
thigmonasty - tigmonastia 141
thigmotropism - tigmotropismo 140
thin filaments - filamentos delgados 144
thoracic cavity - cavidad torácica 115
orax - tórax 115
dal flow intensity - intensidad umbral 15
dal flow - flujo cíclico 117
idal volume - volumen respiratorio 117
ssue - tejido 83
oadstool - seta 48
onoplast - tonoplasto 11
ooth - diente 104
orsion - torsión 7
toxin - toxina 43
trachea - tráquea 115
acheal system - sistema traqueal 114 tracheid - traqueida 84
tracheole - traqueola 115
ranscellular strand hipótesis de la cadena transcelular 122
ranscription - transcripción 205
ransferase - transferasa 30
translation - traducción 205
ranslocation - translocación \({ }^{1} 122\)
ranslocation - translocación 2206
translucent - tras/úcido 26
transmission - transmisión 111
ansmission speed - velocidad de transmiansparent
ansparent - transparente 23
ranspiration stream - corriente de transpora
ción 122
ranspiration - transpiración 120
ransitional epithelium - epitelio de transición
88
rematoda - Trematodos 63
ricuspid valve - valvula tricúspide 125
riglyceride - triglicérido 20
riose sugar - azúcar triosa 1
riploblastic - triblástico 62
ploid - triploide 207
richosphere larva - larva trocófora 66
rocophore larva - larva trocófora
ropism - tropismo 139
ropomyosin - tropomiosina 144
trypsin - tripsina 107
trypsinogen - tripsinógeno 107
tube foot - pie ambulacral 73
tuber - tubérculo 174
unica - túnica 170
Turbellaria - Turbelarios 63
urgid - turgente 119
furgor - turgencia 119
turgor pressure - presión de turgencia 110
ultrafiltration - ultrafiltración 137
ultrastructure - ultraestructura 9
umbilical cord - cordón umbilical 192
unicellular - unicelular 9
unisexual - unisexual 18
unit membrana - membrana unitaria 14
unsaturated - no saturado 20
unstriated muscle - músculo liso 143
uracil - uracilo 22
urea - urea 134
ureter - uréter 135
uric acid - ácido úrico 134
urine - orina 135
uterus - orina 135
utricle - utrículo 160
vaccine - vacuna 234
vaccination - vacunación 234
vacuolar patway - vía vacuolar 12
vacuole - vacuola 1
vagus nerve - nervio vago 126
valve - válvula 125
valves pocket - válvulas semilunares (válvulas sigmoideas) 125
vas deferens - conducto deferente 188
as efferens - conducto eferente 188
vascular cryptogams - criptógramas vascula res 54
vascular plant - planta vascular 50
ascular tissue - tejido vascular 83
vascular system - sistema vascular 127
vector - vector 111
vegetative propagation - propagación vegetativa 174
vein - vena
vein - vena \({ }^{\text {a }} 127\)
vene - estandarto 148
vene - estandarte 148
ventilation rate - índice de ventilación 117
ventral - ventral 75
ventricle - ventrículo 124
ventricular node - nudo auricoventricular 125
venule - vénula 127
vernalization - vernalización 141
vertebra - vértebra 147
ertebral column - columna vertebral 7
vertebrate - vertebrado 74
esicle - vesícula 12
essel - vaso a 127
estibular apparatus - aparato vestibular 159 vestigial - vestigial 212
villi - vellosidades 103
virus - virus 43
visceral cleft - hendidura visceral 74
visceral hump - masa visceral 71
visceral muscle - músculo visceral 143
viscous - viscoso 237
vital capacity - cantidad vital 117
vitamin - vitamina 25
vitamin B - vitamina B 32
vitreous humour - humor vítreo 163
viviparity - viviparismo 192
ocal cord - cuerda vocal 116
voluntary muscle - músculo voluntario 143
water cycle - ciclo del agua 226
water dispersal - dispersión por el agua 186 water pollution - polución de las aguas 230 water purification - purificación del agua 230 water vascular system - sistema acuifero 73 Watson-Crick hypo
son y Crick 25
web - tela de araña 70
weed - mala hierba 229
white blood cell - glóbulo blanco 91
white matter - sustancia blanca 155
whorl - verticiclo 83
ind dispersal dispersiz
spersión por el viento 186 polinización por el viento 183
x chromosomes - cromosomas \(\times 20\) xerophyte - xerófito 137
xylem - xilema 84
chromosomes - cromosomas Y 201 yeast - levadura 49
zone - zona 218
zone of cell division - zona de división celular
one od differentiation - zona de diferenciación 170
one oxpansión - zona de expansión 170 zoology - zoología 60
zooplankton - zooplancton 227
zoospore - zoospora 47
zygospore - zigospora 47
zygote - cigoto 166
zigomorphic - cigomorfa 181
```

